Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Kết quả nào đúng? A ∫ sin2 x cos x = cos2x si[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Kết đúng? R A sin2 x cos x = cos2 x sin x + C R C sin2 x cos x = −cos2 x sin x + C sin3 x + C R sin3 x D sin2 x cos x = + C Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = −x4 + 3x2 − B y = x3 C y = x3 − 2x2 + 3x + D y = x2 − 2x + B R sin2 x cos x = − Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài nhất? A x = + 2ty = + tz = B x = + 2ty = + tz = C x = + 2ty = + tz = − 4t D x = + ty = + 2tz = Câu Hàm √ số sau√đây đồng biến R? A y = x2 + x + − x2 − x + B y = x2 C y = x4 + 3x2 + D y = tan x m R dx theo m? Câu Cho số thực dươngm Tính I = x + 3x + 2m + m+2 m+1 m+2 A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) m+2 m+1 m+2 2m + Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (−2; −1; 2) B (2; −1; 2) C (−2; 1; 2) D (2; −1; −2) Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A 4πR3 B πR3 C 6πR3 D 2πR3 p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < π y > − 4π2 B Nếux = y = −3 C Nếux > thìy < −15 D Nếu < x < y < −3 Câu R9 Cơng thức sai? A R a x = a x ln a + C C sin x = − cos x + C R B R e x = e x + C D cos x = sin x + C p Câu 10 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux = y = −3 B Nếux > thìy < −15 C Nếu < x < π y > − 4π D Nếu < x < y < −3 Câu 11 Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 Câu 12.√ Cho hai số thực a, bthỏa mãn√ a > b > Kết luận √ √ √5 sau sai? a √5 − − 2 A a b C a < b D e > eb Trang 1/5 Mã đề 001 Câu 13 Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (−2; −3; −1) B M ′ (−2; 3; 1) C M ′ (2; 3; 1) D M ′ (2; −3; −1) Câu 14 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 B C(6; −17; 21) C C(6; 21; 21) D C(20; 15; 7) A C(8; ; 19) Câu 15 Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 100a3 B 60a3 C 30a3 D 20a3 Câu 16 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) √ bao nhiêu? √ A R = 21 B R = 29 C R = D R = y z−2 x+1 = = Viết Câu 17 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : 1 phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox A (P) : y − z + = B (P) : y + z − = C (P) : x − 2y + = D (P) : x − 2z + = Câu 18 Cho hình phẳng (H) giới hạn đồ thị hàm số y = x2 đường thẳng y = mx với m , Hỏi có số ngun dương m để diện tích hình phẳng (H) số nhỏ 20 A B C D Câu 19 Cho hàm số y = f (x) có đồ thị hình vẽ Tìm m để phương trình f (x) = m có bốn nghiệm phân biệt A −4 < m < −3 B m > −4 C −4 < m ≤ −3 D −4 ≤ m < −3 Câu 20 Cho hàm số có bảng biến thiên: Khẳng định sau đúng? A Hàm số đạt cực đại C Hàm số đạt cực đại B Hàm số đạt cực đại D Hàm số đạt cực đại Câu 21 Tính đạo hàm hàm số y = 2023 x A y′ = x.2023 x−1 B y′ = 2023 x ln x C y′ = 2023 x D y′ = 2023 x ln 2023 Câu 22 Tập nghiệm bất phương trình log3 (36 − x2 ) ≥ A [−3; 3] B (0; 3] C (−∞; 3] D (−∞; −3] ∪ [3; +∞) Câu 23 Cho số phức z = (1 + i)2 (1 + 2i) Số phức z có phần ảo A B −4 C D 2i Câu 24 Cho hàm số y = f (x) xác định liên tục đoạn có [−2; 2] có đồ thị đường cong hình vẽ bên Điểm cực tiểu đồ thị hàm số y = f (x) A M(−2; −4) B x = −2 C x = D M(1; −2) Câu 25 Tính thể tích khối trịn xoay quay xung quanh trục hồnh hình phẳng giới hạn đường y = , x = 1, x = trục hoành x π 3π π 3π A V = B V = C V = D V = 2 Câu 26 Tìm tất giá trị tham số m để hàm số y = (m + 2) biến R A m ≤ −2 B m < −3 C m ≤ x3 − (m + 2)x2 + (m − 8)x + m5 nghịch D m ≥ −8 Trang 2/5 Mã đề 001 √ Câu 27 Cho hình chóp S ABC có S A⊥(ABC), S A = a Tam giác ABC vuông cân B, AC = 2a Thể tích√khối chóp S ABC √ √ √ 2a3 a3 a3 B C D a3 A 3 m Câu 28 Xác định tập tất giá trị tham số m để phương trình 2x + x − 3x − = − 2 có nghiệm phân biệt 19 19 A S = (−2; − ) ∪ ( ; 6) B S = (−2; − ) ∪ ( ; 7) 4 4 19 C S = (−3; −1) ∪ (1; 2) D S = (−5; − ) ∪ ( ; 6) 4 ′ ′ ′ Câu 29 Lăng trụ ABC.A B C có đáy tam giác cạnh a Hình chiếu vng góc A′ lên (ABC) trung điểm BC Góc cạnh bên mặt phẳng đáy 600 Khoảng cách từ C ′ đến mp (ABB′ A′ ) √ √ √ √ 3a 10 3a 13 a 3a 13 B C D A 13 20 26 Câu 30 Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A B C D −6 Câu 31 Nguyên hàm F(x) hàm số f (x) = 2x2 + x3 − thỏa mãn điều kiện F(0) = x4 x4 A x3 + − 4x + B x3 − x4 + 2x C 2x3 − 4x4 D x3 + − 4x 4 Câu 32 Cho hình chóp S.ABC có đáy ABC tam giác vuông cân với BA = BC = a, S A = a vng góc với √ góc hai mặt phẳng √ (SAC) (SBC) bằng? √ mặt phẳng đáy Tính cơsin 2 B C D A 2 Câu 33 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y + 2)2 + (z − 4)2 = Câu 34 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể √ tích khối trụ (T ) lớn √ √ √ 250π 500π 400π 125π A B C D 9 3x cắt đường thẳng y = x + m Câu 35 Tìm tất giá trị tham số mđể đồ thị hàm số y = x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = B Không tồn m C m = D m = −2 π R2 Câu 36 Biết sin 2xdx = ea Khi giá trị a là: A ln B − ln √ C Câu 37 Tính đạo hàm hàm số y = log4 x2 − x x x A y′ = B y′ = C y′ = 2(x − 1) ln (x − 1)log4 e (x − 1) ln D D y′ = √ x2 − ln Câu 38 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m > m < − B m > C m < −2 D m > m < −1 Trang 3/5 Mã đề 001 Câu 39 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ 3a 3a 30 a 15 3a B C D A 10 Câu 40 Cho tứ diện DABC, tam giác ABC vuông B, DA vuông góc với mặt phẳng (ABC) Biết AB = 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính √ √ √ √ 5a 5a 5a 5a A B C D 3 Câu 41 Chọn mệnh đề mệnh đề sau: R R (2x + 1)3 A x dx =5 x + C B (2x + 1)2 dx = +C R R e2x C sin xdx = cos x + C D e2x dx = + C y x−1 x−2 = = điểm −1 A(2 ; ; 3) Toạ độ điểm A′ đối xứng với A qua đường thẳng d tương ứng 10 5 A (2 ; −3 ; 1) B ( ; − ; ) C ( ; − ; ) D ( ; − ; ) 3 3 3 3 R Câu 43 Biết f (x)dx = sin 3x + C Mệnh đề sau mệnh đề đúng? cos 3x cos 3x A f (x) = B f (x) = cos 3x C f (x) = − D f (x) = −3 cos 3x 3 Câu 42 Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : Câu 44 Cho hàm số y = f (x) có bảng biến thiên sau Hàm số y = f (x) nghịch biến khoảng khoảng đây? A (−∞ ; −2) B (0 ; +∞) C (−2 ; 0) D (−1 ; 4) Câu 45 Cho hàm số f (x) liên tục R Gọi F(x), G(x) hai nguyên hàm f (x) R thỏa mãn Re2 f (ln x) 2F(0) − G(0) = 1, F(2) − 2G(2) = F(1) − G(1) = −1 Tính 2x A −4 B −2 C −6 D −8 Câu 46 Cho hàm số y = f (x) hàm số bậc có đồ thị hình vẽ Giá trị cực tiểu hàm số cho A −1 B C −2 D Câu 47 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực đại đồ thị hàm số cho có tọa độ A (−1; −4) B (1; −4) C (−3; 0) D (0; −3) Câu 48 Có cặp số nguyên (x; y) thỏa mãn log4 (9x2 + 16y2 + 112y) + log3 (9x2 + 16y2 ) < log4 y + log3 (684x2 + 1216y2 + 720y)? A 64 B 48 C 56 D 76 Câu 49 Cho hình chóp S ABCD có cạnh đáy a Tính khoảng cách từ điểm A đến mặt phẳng (S BD) theo a √ √ a a B 2a C a D A 2 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001