Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Cắt một hình nón bởi một mặt phẳng đi qua trục của nó, ta được thiết diệ[.]
Kiểm tra LATEX ĐỀ KIỂM TRA THPT MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vng với cạnh huyền 2a Tính thể tích khối nón √ √ 3 2π.a π 2.a π.a3 4π 2.a3 A B C D 3 3 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(0; 2; 3) B A(1; 0; 3) C A(1; 2; 0) D A(0; 0; 3) Câu Cho a > a , Giá trị alog a bằng? A B C √ sin 2x Câu R bằng? √ Giá trị lớn hàm số y = ( π) B π C A π √ D √ √ D Câu Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 A (0; ) B (0; 1) C (1; +∞) D ( ; +∞) 4 2x + 2017 Câu Cho hàm số y = (1) Mệnh đề đúng? x + A Đồ thị hàm số (1) khơng có tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = B Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng C Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng D Đồ thị hàm số (1) khơng có tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 √ Câu Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường √ thẳng BB′ AC ′ √ √ √ a a a A B C a D 2 R Câu Tính nguyên hàm cos 3xdx 1 A sin 3x + C B −3 sin 3x + C C sin 3x + C D − sin 3x + C 3 Câu Có số nguyên ysao cho ứng với số nguyên ycó tối đa 100 số nguyên xthỏa mãn 3y−2x ≥ log5 (x + y2 )? A 13 B 17 C 20 D 18 Câu 10 Cho hàm số y = f (x) xác định tập R có f ′ (x) = x2 − 5x + Khẳng định sau đúng? A Hàm số cho đồng biến khoảng (−∞; 3) B Hàm số cho nghịch biến khoảng (1; 4) C Hàm số cho đồng biến khoảng (1; 4) D Hàm số cho nghịch biến khoảng (3; +∞) Câu 11 Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) N( 3; 2; −1) Đường thẳng MN có phương trình tham số A x = − ty = tz = + t B x = + ty = tz = + t C x = + 2ty = 2tz = + t D x = + ty = tz = − t Trang 1/4 Mã đề 001 √ Câu 12 Cho hình thang cong (H) giới hạn đường y = x, y = 0, x = 0, x = Đường thẳng x = k (0 < k < 4) chia hình (H) thành hai phần có diện tích S S hình vẽ Để S = 4S giá trị k thuộc khoảng sau đây? A (3, 1; 3, 3)· B (3, 7; 3, 9)· C (3, 5; 3, 7)· D (3, 3; 3, 5)· Câu 13 Có cặp số nguyên (x; y) thỏa mãn log4 (9x2 + 16y2 + 112y) + log3 (9x2 + 16y2 ) < log4 y + log3 (684x2 + 1216y2 + 720y)? A 76 B 64 C 56 D 48 Câu 14 Cho đa giac đêu 12 đinh Chon ngâu nhiên đinh 12 đinh cua đa giac Xac suât đê 3đinh đươc chon tao tam giac đêu la 1 1 B P = C P = D P = A P = 14 55 220 z = Biết tập hợp điểm biểu diễn số phức zlà đường Câu 15 Cho số phức zthỏa mãn i + tròn (C) √ Tính bán kính rcủa đường trịn (C) √ B r = C r = D r = A r = Câu 16 Cho số phức z1 = − 4i; z2 = − i, phần ảo số phức z1 z2 A B −1 C D −7 Câu 17 Phương trình (2 − i)z + 3(1 + iz) = + 8i có nghiệm A z = − i B z = + i C z = −3 + i D z = −3 − i Câu 18 Biết x = nghiệm phương trình x + (m − 1)x − 8(m − 1) = (m tham số phức có phần ảo âm) √ Khi đó, mơ-đun của√số phức w = m − 3m + i ? √ B |w| = C |w| = D |w| = 73 A |w| = 2 Câu 19 Biết z nghiệm phức có phần ảo dương phương trình z2 − 4z + 13 = Khi mơ-đun số phức w = √ z + 2z bao nhiêu?√ √ A |w| = 37 B |w| = 13 C |w| = D |w| = 13 Câu 20 Kí hiệu z1 , z2 , z3 z4 bốn nghiệm phức phương trình z4 − z2 − 12 = Tính tổng T = |z1 | + |z√2 | + |z3 | + |z4 | √ √ B T = + C T = + D T = A T = Câu 21 Gọi z1 , z2 hai nghiệm phức phương trình 2(1+i)z2 −4(2−i)z−5−3i = TổngT = |z1 |2 +|z2 |2 bao nhiêu? √ 13 13 B T = C T = D T = A T = Câu 22 Biết z số phức thỏa mãn z2 + 3z + = Khi mơ-đun số phức w = z + ? √ √ √ √ A |w| = B |w| = C |w| = D |w| = 2 Câu 23 Cho phương trình bậc hai az2 + bz + c = (với a, b, c ∈ R) Xét tập số phức, khẳng định sau, đâu khẳng định sai? −b A Phương trình cho có tổng hai nghiệm a B Phương trình cho ln có nghiệm c C Phương trình cho có tích hai nghiệm a D Nếu ∆ = b2 − 4ac < phương trình vơ nghiệm Câu 24 Biết z = + 2i nghiệm phức phương trình z2 + (m − 1)z + m − = (m tham số phức) Khi phần ảo m bao nhiêu? 7 A B C − D − 4 4 Câu 25 Biết phương trình z + mz − m + = có hai nghiệm số ảo Khi tham số thực m gần giá trị giá trị sau? A −1 B C D −4 Trang 2/4 Mã đề 001 Câu 26 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (−2; −4; −6) B (1; 2; 3) C (2; 4; 6) D (−1; −2; −3) Câu 27 Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) √ √ √ √ 2 3 a B a C a D 2a A 3 Câu 28 Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho C πrl2 D πrl A 2πrl B πr2 l 3 Câu 29 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A B C −1 D Câu 30 Cho số phức z = + 9i, phần thực số phức z2 A −77 B 36 C D 85 Câu 31 Cho khối chóp S ABC có đáy tam giác vuông cân A, AB = 2, S A vng góc với đáy S A = (tham khảo hình bên) Thể tích khối chóp cho A B 12 C D Câu 32 Có cặp số nguyên (x; y) thỏa mãnlog3 (x2 + y2 + x) + log2 (x2 + y2 ) ≤ log3 x + log2 (x2 + y2 + 24x)? A 48 B 49 C 89 D 90 Câu 33 Đồ thị hàm số có dạng đường cong hình bên? x−3 C y = x2 − 4x + D y = x4 − 3x2 + A y = x3 − 3x − B y = x−1 √ 2 Câu 34 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3√ √ 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 √ i Giá trị (a + bz + cz2 )(a + bz2 + cz) Câu 35 Cho a, b, c số thực z = − + 2 A a2 + b2 + c2 − ab − bc − ca B a2 + b2 + c2 + ab + bc + ca C D a + b + c Câu 36 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D Câu 37 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = (|z| − 4)2 B P = |z|2 − C P = (|z| − 2)2 D P = |z|2 − Câu 38 Cho số phức z , thỏa mãn A |z| = B |z| = z+1 số ảo Tìm |z| ? z−1 C |z| = D |z| = Trang 3/4 Mã đề 001 Câu 39 Cho số phức z , cho z số thực w = thức |z| bằng? + |z|2 z số thực Tính giá trị biểu + z2 √ 1 C D A B Câu 40 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 Câu 41 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu!diễn số phức thuộc tập hợp sau đây? ! ! ! 1 9 B ; C ; +∞ D ; A 0; 4 4 Câu 42 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm R B điểm P bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm S D điểm Q Câu 43 Cần chọn người công tác từ tổ có 30 người, số cách chọn A 330 B 10 C C30 D A330 Câu 44 Một hình trụ có bán kính đáy r = a, độ dài đường sinh l = 2a Tính diện tích xung quanh hình trụ A 5πa2 B 4πa2 C 2πa2 D 6πa2 Câu 45 Cho hàm số y = f (x) có bảng biến thiên sau : Hàm số cho đồng biến khoảng đây? A (0; 1) B (−1; 0) C (1; +∞) D (−∞; 1) √ Câu 46 Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức z thoả mãn z + − 8i = đường trịn có phương trình: √ √ A (x + 4)2 + (y − 8)2 = B (x − 4)2 + (y + 8)2 = C (x − 4)2 + (y + 8)2 = 20 D (x + 4)2 + (y − 8)2 = 20 R Câu 47 6x5 dxbằng B 6x6 + C C 30x4 + C D x6 + C A x6 + C Câu 48 Cho hàm số có bảng biến thiên: Khẳng định sau đúng? A Hàm số đạt cực đại B Hàm số đạt cực đại C Hàm số đạt cực đại D Hàm số đạt cực đại −a = (4; −6; 2) Phương Câu 49 Cho đường thẳng ∆ qua điểm M(2; 0; −1) có véctơ phương → trình tham số đường thẳng ∆ A x = + 2ty = −3tz = + t C x = −2 + 4ty = −6tz = + 2t B x = + 2ty = −3tz = −1 + t D x = −2 + 2ty = −3tz = + t Câu 50 Cho hình chóp S ABCD có đáy hình vng ABCD cạnh a, cạnh bên S A vng góc với mặt phẳng đáy Biết S A = 3a, tính thể tích V khối chóp S ABCD a3 A V = B V = 3a3 C V = 2a3 D V = a3 - - - - - - - - - - HẾT- - - - - - - - - Trang 4/4 Mã đề 001