Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001001 Câu 1 Với giá trị nào của tham số m thì tiếp tuy[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001001 Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = B m = −15 C m = 13 D m = −2 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài nhất? A x = + 2ty = + tz = − 4t B x = + ty = + 2tz = C x = + 2ty = + tz = D x = + 2ty = + tz = Câu √Cho hai√ số thực a, bthỏa mãn a > b > Kết luận√ sau sai? √ √5 √ − − a b 2 A a e C a > b D a < b Câu Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = [ -ln3; +∞) B S = (−∞; ln3) C S = [ 0; +∞) D S = (−∞; 2) Câu Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ C m ≥ D m ∈ (0; 2) A m ∈ (−1; 2) B −1 < m < Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu A πR3 B πR3 C πR3 D 4πR3 Câu Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 60a3 B 20a3 C 30a3 D 100a3 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; −5; 0) B (0; 0; 5) C (0; 1; 0) D (0; 5; 0) Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) bao nhiêu? √ √ A R = B R = 21 C R = D R = 29 Câu 10 Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = − B y = + ln ln 5 ln x x C y = +1− D y = −1+ ln ln 5 ln ln Câu 11 Cho hình chóp S ABCcó cạnh đáy a cạnh bên b Thể tích khối chóp là: √ √ a2 3b2 − a2 3ab2 A VS ABC = B VS ABC = 12 12 q √ √ a2 b2 − 3a2 3a b C VS ABC = D VS ABC = 12 12 Trang 1/5 Mã đề 001001 Câu 12 Đồ thị hàm số sau có vơ số đường tiệm cận đứng? A y = x3 − 2x2 + 3x + B y = tan x 3x + C y = sin x D y = x−1 x Câu 13 Giá trị nhỏ hàm số y = tập xác định x +1 1 B y = −1 C y = D y = A y = − R R R R 2 Câu 14 Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 600 B 360 C 450 D 300 Câu 15 Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 − 2x2 + 3x + B y = x3 C y = x2 − 2x + D y = −x4 + 3x2 − Câu 16 Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số đồng biến R B Hàm số đồng biến (−∞; 0) ∪ (0; +∞) C Hàm số nghịch biến (0; +∞) D Hàm số nghịch biến R Câu 17 Tập nghiệm bất phương trình log3 (36 − x2 ) ≥ A (−∞; 3] B (0; 3] C (−∞; −3] ∪ [3; +∞) D [−3; 3] Câu 18 Tìm tất giá trị thực tham số mđể hàm số y = (m + 1)x4 − mx2 + có cực tiểu mà khơng có cực đại A −1 ≤ m ≤ B m > C m < −1 D −1 ≤ m < Câu 19 Cho cấp số nhân (un ) với u1 = − ; u7 = −32 Tìm q? A q = ±1 B q = ± C q = ±2 D q = ±4 R3 R3 R3 Câu 20 Biết f (x)dx = g(x)dx = Khi [ f (x) + g(x)]dx A B C −2 Câu 21 Với a số thực dương tùy ý, log5 (5a) A − log5 a B + log5 a C − log5 a D D + log5 a Câu 22 Hàm số y = (x + m)3 + (x + n)3 − x3 đồng biến khoảng (−∞; +∞) Giá trị nhỏ biểu thức P = 4(m2 + n2 ) − m − n −1 D A −16 B C 16 Câu 23 Cần chọn người cơng tác từ tổ có 30 người, số cách chọn A C30 B A330 C 330 D 10 Câu 24 Số phức z = − 2i có điểm biểu diễn mặt phẳng tọa độ M Tìm tọa độ điểm M A M(5; −2) B M(−2; 5) C M(5; 2) D M(−5; −2) Re lnn x Câu 25 Tính tích phân I = dx, (n > 1) x 1 1 A I = B I = C I = D I = n + n−1 n+1 n Câu 26 Một bình đựng nước dạng hình nón (khơng có đáy), đựng đầy nước Người ta thả vào khối cầu có đường kính chiều cao bình nước đo thể tích nước tràn ngồi 18π (dm3) Biết khối cầu tiếp xúc với tất đường sinh hình nón nửa khối cầu chìm nước Tính thể tích nước cịn lại bình A 54π(dm3 ) B 6π(dm3 ) C 24π(dm3 ) D 12π(dm3 ) Trang 2/5 Mã đề 001001 Câu 27 Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2) Đường phân giác góc A tam giác ABC cắt mặt phẳng (P) : x + y + z − = điểm điểm sau đây: A (4; −6; 8) B (−2; 3; 5) C (1; −2; 7) D (−2; 2; 6) Câu 28 Tính diện tích hình phẳng giới hạn đồ thị (C) hàm số y = x2 − 4x + 5, tiếp tuyến A(1; 2) tiếp tuyến B(4; 5) đồ thị (C) B C D A 4 4 x −2x +3x+1 Câu 29 Cho hàm số f (x) = e Mệnh đề đúng? A Hàm số nghịch biến khoảng (−∞; 1) (3; +∞) B Hàm số đồng biến khoảng(−∞; 1) nghịch biến khoảng(3; +∞) C Hàm số đồng biến khoảng (−∞; 1) (3; +∞) D Hàm số nghịch biến khoảng(−∞; 1) đồng biến khoảng(3; +∞) √ x− x+2 có tất tiệm cận? Câu 30 Đồ thị hàm số y = x2 − A B C D Câu 31 Cho log2 b = 3, log2 c = −4 Hãy tính log2 (b2 c) A B C D Câu 32 Họ nguyên hàm hàm số y = (x − 1)e là: A (x − 1)e x + C B xe x + C C (x − 2)e x + C D xe x−1 + C x Câu 33 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng ′ ′ ′ (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính √ thể tích khối lăng trụ √ABC.A B C √ 3 B 3a C 9a D 6a3 A 4a Câu 34 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −4 B C −2 D √ 2x − x + Câu 35 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Câu 36 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 6a3 B 12a3 C 3a3 D 4a3 Câu 37 Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm A(1; 2; 3) −n (2; 1; −4) có véc tơ pháp tuyến → A 2x + y − 4z + = B 2x + y − 4z + = C 2x + y − 4z + = D −2x − y + 4z − = R ax + b 2x Câu 38 Biết a, b ∈ Z cho (x + 1)e2x dx = ( )e + C Khi giá trị a + b là: A B C D Câu 39 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A m > −2 B −3 ≤ m ≤ C −4 ≤ m ≤ −1 D m < Câu 40 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai√cạnh AB, AD Tính khoảng MN S C √ cách hai đường thẳng √ √ 3a a 15 3a 3a 30 A B C D 2 10 Trang 3/5 Mã đề 001001 x2 + mx + Câu 41 Tìm tất giá trị tham số m để hàm số y = đạt cực tiểu điểm x = x+1 A Khơng có m B m = −1 C m = D m = Câu 42 Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) N( 3; 2; −1) Đường thẳng MN có phương trình tham số A x = + ty = tz = − t B x = + 2ty = 2tz = + t C x = + ty = tz = + t D x = − ty = tz = + t Câu 43 Đường cong hình bên đồ thị hàm số bốn hàm số liệt kê bốn phương án Hỏi hàm số hàm số nào? A B C D Câu 44 Cho cấp số nhân (un ) với u1 = công bội q = −2 Số hạng thứ cấp số nhân A 384 B −192 C 192 D −384 Câu 45 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) mặt phẳng (P) : 2x+2y−z+9 = Đường thẳng d qua A có vectơ phương ⃗u = (3; 4; −4) cắt (P) B Điểm M thay đổi (P) cho M nhìn đoạn AB góc 90o Khi độ dài MB lớn nhất, đường thẳng MB qua điểm điểm sau? A H(−2; −1; 3) B K(3; 0; 15) C J(−3; 2; 7) D I(−1; −2; 3) Câu 46 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 21 B 18 C 12 D 27 − → Câu 47 Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → n→ Góc hai mặt phẳng (P) (Q) Q Biết cosin góc hai vectơ nP nQ − A 45◦ B 90◦ C 60◦ D 30◦ x−2 y−6 z+2 Câu 48 Trong không gian Oxyz, cho hai đường thẳng chéo d1 : = = −2 x−4 y+1 z+2 d2 : = = Gọi mặt phẳng (P) chứa d1 (P)song song với đường thẳng d2 Khoảng −2 cách từ điểm M(1; 1; 1) đến (P) √ A √ B 10 C √ D √ 10 53 Câu 49 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Số giá trị nguyên tham số m để phương f (x + m) = m có ba nghiệm phân biệt? A B C D Trang 4/5 Mã đề 001001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001001