Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x2 và đường thẳ[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 A B − C D 6 Câu Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 B − ln − C ln + D ln − A − ln 2 2 Câu Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = C m = −7 D m = Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 B C D A Câu Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) 1 A (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = B (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 3 C (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = D (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = Câu Tập nghiệm bất phương trình log (x − 1) ≥ là: A [2; +∞) B (1; 2] C (1; 2) D (−∞; 2] Câu Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vuông với cạnh huyền 2a Tính thể tích khối nón √ √ 4π 2.a π.a3 π 2.a3 2π.a3 B C D A 3 3 Câu Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m ≥ B m ≥ −1 C m > D m ≥ Câu Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d > R B d = C d < R D d = R Câu 10 Đồ thị hàm số có dạng đường cong hình bên? A y = x2 − 4x + B y = x3 − 3x − C y = x4 − 3x2 + D y = x−3 x−1 Câu 11 Cho cấp số nhân (un ) với u1 = công bội q = Giá trị u3 A B C D 2 Câu 12 Có giá trị nguyên tham số m để hàm số y = −x + 6x2 + mx có ba điểm cực trị? A 15 B C 17 D Trang 1/5 Mã đề 001 Câu 13 Nếu A R2 R2 f (x) = [ f (x) − 2] B C −2 D Câu 14 Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 30 B 210 C 105 D 225 Câu 15 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 D A B C Câu 16 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa độ A (1; 2; −3) B (−1; −2; −3) C (1; −2; 3) D (−1; 2; 3) (1 + i)(2 − i) Câu 17 Mô-đun số phức z = √ √ + 3i A |z| = B |z| = C |z| = D |z| = Câu 18 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = B A = 2ki C A = D A = 2k Câu 19 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A −10 B −9 C D 10 Câu 20 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D Câu 21 Với số phức z, ta có |z + 1|2 A z · z + z + z + B z + z + D |z|2 + 2|z| + C z2 + 2z + Câu 22 2i, z2 = − i Giá trị của√biểu thức |z1 + z1 z2 | √ Cho số phức z1 = + √ √ A 30 B 10 C 130 D 10 Câu 23 Cho hai √ số phức z1 = + i z2 = − 3i Tính mơ-đun số phức z1 + z2 √ A |z1 + z2 | = B |z1 + z2 | = C |z1 + z2 | = D |z1 + z2 | = 13 Câu 24 Những số sau vừa số thực vừa số ảo? A C.Truehỉ có số B Khơng có số C Chỉ có số D (1 + i)(2 + i) (1 − i)(2 − i) Câu 25 Cho số phức z thỏa mãn z = + Trong tất kết luận sau, kết 1−i 1+i luận đúng? D z = z A z số ảo B |z| = C z = z R2 Câu 26 Cho hàm số f (x) có đạo hàm đoạn [−1; 2] f (−1) = 2023, f (2) = −1 Tích phân −1 f ′ (x) bằng: A −2024 B C 2025 D 2024 Câu 27 Tìm nguyên hàm F(x) hàm số f (x) = e x+1 , biết F(0) = e A F(x) = e x B F(x) = e x + C F(x) = e x+1 D F(x) = e2x Câu 28 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) tọa độ trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là: A C(−1; −4; 4) B C(1; 4; 4) C C(1; 0; 2) D C(−1; 0; −2) Trang 2/5 Mã đề 001 Câu 29 Trong không gian Oxyz, cho ba điểm A(1; 3; 2), B(1; 2; 1), C(4; 1; 3) Mặt phẳng qua trọng tâm G tam giác ABC vng góc với đường thẳng AC có phương trình A 3x − 2y + z − 12 = B 3x − 2y + z − = C 3x − 2y + z + = D 3x + 2y + z − = Câu 30 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương trình A x + 2y + 2z − 15 = B x − 2y + 2z + 15 = C x + 2y + 2z + 15 = D x − 2y + 2z − 15 = R4 R4 R3 Câu 31 Cho hàm số f (x) liên tục R f (x) = 10, f (x) = Tích phân f (x) A B C D −−→ Câu 32 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) B(2; 2; 1) Vectơ AB có tọa độ A (1; 1; 3) B (−1; −1; −3) C (3; 3; −1) D (3; 1; 1) R2 Câu 33 Tính tích phân I = xe x dx A I = e B I = 3e2 − 2e C I = e2 D I = −e2 Câu 34 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | Câu 35 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = B A = −1 C A = D A = + i √ Câu 36 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm M B điểm N bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm P D điểm Q Câu 37 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i A |z| = B |z| = C |z| = D |z| = 2 Câu 38 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm Q B điểm S bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm R D điểm P Câu 39 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D 2 Câu 40 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − 3√là hai nghiệm phức √ phương trình z2 + az + b = Tính T = |z1 | + |z2 | √ √ 85 97 A T = B T = C T = 13 D T = 13 3 Câu 41 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C D 18 Câu 42 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 Trang 3/5 Mã đề 001 x2 Câu 43 Tính tích tất nghiệm phương trình (log2 (4x)) + log2 ( ) = 8 A 64 B 32 C D 128 Câu 44 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = ln a B P = + 2(ln a)2 C P = r Câu 45 Tìm tập xác định D hàm số y = log2 D P = 2loga e 3x + x−1 A D = (−1; 4) B D = (1; +∞) C D = (−∞; 0) D D = (−∞; −1] ∪ (1; +∞) √ 2x − x2 + có số đường tiệm cận đứng là: Câu 46 Đồ thị hàm số y = x2 − A B C D Câu 47 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −x4 + 2x2 B y = −x4 + 2x2 + C y = −2x4 + 4x2 D y = x3 − 3x2 Câu 48 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích toàn phần (T ) A 8π B 10π C 6π D 12π Câu 49 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y + 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 50 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = A 23 B 25 C 27 D 29 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001