Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x2 và đường thẳ[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 A − B C D 6 Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = + 2ty = + (m − 1)tz = − t Tìm tất giá trị tham số m để d viết dạng tắc? A m , −1 B m , C m = D m , y+2 z x−1 = = Viết phương Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vuông góc với d A (P) : x − 2y − = B (P) : x − y + 2z = C (P) : x + y + 2z = D (P) : x − y − 2z = Câu Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; −1; 2) B I(0; 1; −2) C I(0; 1; 2) D I(1; 1; 2) Câu Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề đúng? A Hàm số nghịch biến khoảng (−∞; −3) B Hàm số đồng biến khoảng (−3; 1) C Hàm số nghịch biến khoảng (1; +∞) D Hàm số nghịch biến khoảng (−3; 1) a3 Câu Cho hình chóp S ABCD có cạnh đáy a thể tích Tìm góc mặt bên mặt đáy hình chóp cho A 450 B 300 C 600 D 1350 Câu Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 A ln + B − ln C − ln − D ln − 2 2 √ Câu Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường √ thẳng BB′ AC ′ √ √ √ a a a A B a D C 2 Câu Cho khối chóp S ABC có đáy tam giác vuông cân A, AB = 2, S A vng góc với đáy S A = (tham khảo hình bên) Thể tích khối chóp cho A B C D 12 Câu 10 Tập nghiệm bất phương trình x+1 < A [1; +∞) B (−∞; 1] C (1; +∞) D (−∞; 1) Câu 11 Trong khơng gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 60◦ B 45◦ C 90◦ D 30◦ R2 R2 Câu 12 Nếu f (x) = [ f (x) − 2] A B −2 C D Câu 13 Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 30 B 210 C 105 D 225 Trang 1/5 Mã đề 001 Câu 14 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (7; 6) B (6; 7) C (−6; 7) D (7; −6) Câu 15 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trìnhlà: x=5+t x = + 2t x = + 2t x = + 2t y = + 2t y = −1 + 3t y = −1 + t y = + 3t A B C D z = −1 + t z = −1 + 3t z = −1 + t z = + 3t Câu 16 Cho số phức z = + 9i, phần thực số phức z2 A 36 B 85 C −77 D Câu 17 Tìm số phức liên hợp số phức z = i(3i + 1) B z = −3 + i C z = + i A z = −3 − i D z = − i z2 Câu 18 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ A B C 11 D 13 Câu 19 Đẳng thức đẳng thức sau? A (1 + i)2018 = 21009 i B (1 + i)2018 = −21009 C (1 + i)2018 = −21009 i D (1 + i)2018 = 21009 Câu 20 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực là3 phần ảo B Phần thực phần ảo 2i C Phần thực −3 phần ảo là−2 D Phần thực là−3 phần ảo −2i Câu 21 Số phức z = A + 2i + i2017 có tổng phần thực phần ảo 2−i B -1 C D Câu 22 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A z · z = a2 − b2 B |z2 | = |z|2 C z + z = 2bi D z − z = 2a Câu 23 Với số phức z, ta có |z + 1|2 B |z|2 + 2|z| + A z · z + z + z + C z + z + D z2 + 2z + Câu 24 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A N(2; 3) B M(2; −3) C P(−2; 3) D Q(−2; −3) Câu 25 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D R3 Câu 26 Cho a x−2 dx = Giá trị tham số a thuộc khoảng sau đây? 1 A (1; 2) B ( ; 1) C (0; ) D (−1; 0) 2 Câu 27 Cho f (x) hàm số liên tục [a; b] (với a < b ) F(x) nguyên hàm f (x) [a; b].R Mệnh đề đúng? b A a k · f (x) = k[F(b) − F(a)] Ra B b f (x) = F(b) − F(a) b Rb C a f (2x + 3) = F(2x + 3) a D Diện tích S hình phẳng giới hạn hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) trục hồnh tính theo cơng thức S = F(b) − F(a) R4 R4 R3 Câu 28 Cho hàm số f (x) liên tục R f (x) = 10, f (x) = Tích phân f (x) A B C D Trang 2/5 Mã đề 001 Câu 29 Tích phân I = A R2 (2x − 1) có giá trị bằng: B C D Câu 30 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương trình A x − 2y + 2z − 15 = B x − 2y + 2z + 15 = C x + 2y + 2z + 15 = D x + 2y + 2z − 15 = Câu R31 Mệnh đề nàoRsau sai? R A R ( f (x) − g(x)) = R f (x) − R g(x), với hàm số f (x); g(x) liên tục R B R ( f (x) + g(x)) R = f (x) + g(x), với hàm số f (x); g(x) liên tục R C R k f (x) = k f (x) với số k với hàm số f (x) liên tục R D f ′ (x) = f (x) + C với hàm số f (x) có đạo hàm liên tục R Câu 32 Trong không gian Oxyz, điểm đối xứng với điểm B(3; −1; 4) qua mặt phẳng (xOz) có tọa độ A (3; −1; −4) B (−3; −1; −4) C (3; 1; 4) D (−3; −1; 4) Câu 33 Hàm số F(x) = sin(2023x) nguyên hàm hàm số cos(2023x) B f (x) = − 2023 D f (x) = −2023cos(2023x) A f (x) = cos(2023x) C f (x) = 2023cos(2023x) Câu 34 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ B P = C P = D P = A P = 2 z Câu 35 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức M = |z + − i| √ √ C D A B 2 Câu 36 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu diễn số phức thuộc tập hợp sau đây? ! ! ! ! 9 B ; C 0; D ; A ; +∞ 4 4 Câu 37 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = |z|2 − B P = |z|2 − C P = (|z| − 2)2 D P = (|z| − 4)2 Câu 38 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | Câu 39 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ của√biểu thức T = |z + 1| + 2|z − 1| A P = −2016 B P = C max T = D P = 2016 Câu 40 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm P B điểm S bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z √ C điểm Q D điểm R Câu 41 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A B a2 + b2 + c2 − ab − bc − ca C a + b + c D a2 + b2 + c2 + ab + bc + ca Trang 3/5 Mã đề 001 Câu 42 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 Câu 43 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y + 2)2 + (z − 4)2 = Câu 44 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + n 2mn + 2n + C log2 2250 = m A log2 2250 = 3mn + n + n 2mn + n + D log2 2250 = n B log2 2250 = d Câu 45 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ √ A 2a B a C a D a Câu 46 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2a+2b+3c B P = 2abc C P = 2a+b+c D P = 26abc Câu 47 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 − sin 3x)5 x+cos3x ln B y′ = (1 + sin 3x)5 x+cos3x ln C y′ = (1 − sin 3x)5 x+cos3x ln D y′ = x+cos3x ln Câu 48 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox A 33π B 31π C 6π D 32π Câu 49 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ 3a 3a 30 3a a 15 A B C D 10 3x cắt đường thẳng y = x + m Câu 50 Tìm tất giá trị tham số mđể đồ thị hàm số y = x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = B m = C m = −2 D Không tồn m Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001