1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (951)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 124,85 KB

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình trụ có hai đáy là hai đường tròn (O; r) và (O′; r) Một hình nón[.]

Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 ′ Câu Cho hình trụ có hai đáy hai đường trịn (O; r) (O ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 √ √ Câu Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vng cân B S A = a 6, S B = a Tính góc SC mặt phẳng (ABC) A 1200 B 300 C 450 D 600 Câu Cho a, b hai số thực dương Mệnh đề đúng? a ln a A ln(ab) = ln a ln b B ln( ) = b ln b C ln(ab2 ) = ln a + ln b D ln(ab2 ) = ln a + (ln b)2 Câu Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V A B C D R5 dx Câu Biết = ln T Giá trị T là: 2x − √ A T = B T = 81 C T = D T = Câu Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 B [22; +∞) C ( ; 2] [22; +∞) D [ ; 2] [22; +∞) A ( ; +∞) 4 Câu Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(5; 9; 5) B C(3; 7; 4) C C(−3; 1; 1) D C(1; 5; 3) Câu Gọi S (t) diện tích hình phẳng giới hạn đường y = t(t > 0) Tìm lim S (t) t→+∞ A ln + B ln − C − ln 2 ; y = 0; x = 0; x = (x + 1)(x + 2)2 D − ln − Câu Cho khối lăng trụ đứng ABC · A′ B′C ′ √ có đáy ABC tam giác vng cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a, thể tích khối lăng trụ cho √ √ √ √ 3 3 A a B 2a C a D a Câu 10 Cho cấp số nhân (un ) với u1 = công bội q = Giá trị u3 A B C D 2 Trang 1/5 Mã đề 001 Câu 11 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 B C D A Câu 12 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Có giá trị nguyên tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt? A B C D Câu 13 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (2; 4; 6) B (−2; −4; −6) C (−1; −2; −3) D (1; 2; 3) Câu 14 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d = B d = R C d < R D d > R Câu 15 Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox 16 16π 16 16π B C D A 15 15 2 Câu 16 Trên tập hợp số phức, xét phương trình z − 2(m + 1)z + m = ( m tham số thực) Có bao nhiêu giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn z1 + z2 = 2? A B C D Câu 17 Cho hai √ số phức z1 = + i z2 = − 3i Tính mơ-đun số phức z1 + z2 √ B |z1 + z2 | = C |z1 + z2 | = D |z1 + z2 | = 13 A |z1 + z2 | = Câu 18 Số phức z = A (1 + i)2017 có phần thực phần ảo đơn vị? 21008 i B C D 21008 Câu 19 Những số sau vừa số thực vừa số ảo? A C.Truehỉ có số B C Chỉ có số D Khơng có số Câu 20 Tính mơ-đun số phức √ z thỏa mãn z(2 − i) + 13i = √ √ 34 34 C |z| = 34 D |z| = A |z| = 34 B |z| = 3 Câu 21 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực không âm B Mô-đun số phức z số thực C Mô-đun số phức z số phức D Mô-đun số phức z số thực dương !2016 !2018 1+i 1−i Câu 22 Số phức z = + 1−i 1+i A + i B C −2 D Câu 23 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A N(2; 3) B P(−2; 3) C Q(−2; −3) D M(2; −3) Câu 24 2i, z2 = − i Giá trị biểu √ Cho số phức z1 = + √ √ thức |z1 + z1 z2 | √ A 130 B 30 C 10 D 10 4(−3 + i) (3 − i)2 Câu 25 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ − 2i √ √ √ A |w| = B |w| = C |w| = 48 D |w| = 85 −−→ Câu 26 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) B(2; 2; 1) Vectơ AB có tọa độ A (−1; −1; −3) B (1; 1; 3) C (3; 3; −1) D (3; 1; 1) Trang 2/5 Mã đề 001 Câu 27 Tích phân I = A R2 (2x − 1) có giá trị bằng: B C D R4 R4 R3 Câu 28 Cho hàm số f (x) liên tục R f (x) = 10, f (x) = Tích phân f (x) A B C D Câu 29 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương trình A x − 2y + 2z + 15 = B x − 2y + 2z − 15 = C x + 2y + 2z + 15 = D x + 2y + 2z − 15 = Câu 30 Hàm số F(x) = sin(2023x) nguyên hàm hàm số cos(2023x) B f (x) = 2023cos(2023x) A f (x) = − 2023 C f (x) = cos(2023x) D f (x) = −2023cos(2023x) R8 R4 R4 Câu 31 Biết f (x) = −2; f (x) = 3; g(x) = Mệnh đề sau sai? R8 R4 A f (x) = B [4 f (x) − 2g(x)] = −2 R8 R4 C f (x) = −5 D [ f (x) + g(x)] = 10 Câu 32 Hàm số f (x) thoả mãn f ′ (x) = x x là: A (x + 1) x + C B (x − 1) x + C R2 Câu 33 Tính tích phân I = xe x dx A I = 3e2 − 2e B I = −e2 C x2 + x+1 x+1 C I = e2 + C D x2 x + C D I = e Câu 34 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm Q B điểm S bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm R D điểm P z Câu 35 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức √ √ M = |z + − i| B C 2 D A √ Câu 36 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A B a2 + b2 + c2 + ab + bc + ca C a + b + c D a2 + b2 + c2 − ab − bc − ca Câu 37 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ A P = B P = C P = D P = 2 √ Câu 38 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm P B điểm Q bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm M D điểm N Câu 39 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − hai nghiệm phức √ phương trình z2 + az + b = Tính T = |z1 | + |z2 | √ √ √ 97 85 A T = 13 B T = C T = 13 D T = 3 Trang 3/5 Mã đề 001 Câu 40 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ A 15 B C 10 D = Câu 41 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2√ z2 z1 √ A D B √ C 2 = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu diễn ! số phức thuộc tập hợp ! sau đây? ! ! 1 B ; C 0; D ; A ; +∞ 4 4 Câu 42 Cho số phức z thỏa mãn (3 − 4i)z − Câu 43 Cho tứ diện DABC, tam giácABC vng B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính √ √ √ √ 5a 5a 5a 5a A B C D 2 Câu 44 Tính đạo hàm hàm số y = x+cos3x A y′ = x+cos3x ln C y′ = (1 + sin 3x)5 x+cos3x ln B y′ = (1 − sin 3x)5 x+cos3x ln D y′ = (1 − sin 3x)5 x+cos3x ln Câu 45 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 33π 31π 32π A B C D 6π 5 Câu 46 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 B C D A 12 Câu 47 Biết π R2 sin 2xdx = ea Khi giá trị a là: A B C − ln D ln cos x π F(− ) = π Khi giá trị Câu 48 Biết hàm F(x) nguyên hàm hàm f (x) = sin x + cos x F(0) bằng: 6π 6π 6π 3π A ln + B C ln + D ln + 5 5 Câu 49 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 10π B 8π C 12π D 6π Câu 50 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + 2mn + 2n + A log2 2250 = B log2 2250 = m n 3mn + n + 2mn + n + C log2 2250 = D log2 2250 = n n Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 11/04/2023, 10:51

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN