1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (648)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 124,39 KB

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x2 và đường thẳ[.]

Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x A B C D − 6 R Câu Biết f (u)du = F(u) + C Mệnh đề đúng? R R A f (2x − 1)dx = 2F(x) − + C B f (2x − 1)dx = F(2x − 1) + C R R C f (2x − 1)dx = F(2x − 1) + C D f (2x − 1)dx = 2F(2x − 1) + C Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 B C D A Câu Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vuông với cạnh huyền √ 3bằng 2a Tính thể tích√của3 khối nón π 2.a 4π 2.a 2π.a3 π.a3 A B C D 3 3 2x + 2017 Câu Cho hàm số y = (1) Mệnh đề đúng? x + A Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng B Đồ thị hàm số (1) khơng có tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = C Đồ thị hàm số (1) tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 D Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng Câu Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 4m2 − m2 − 12 m2 − m2 − 12 B C D A m 2m 2m 2m Câu Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tiếp tam giác BCD và√có chiều cao chiều cao tứ diện √ √ 2 √ π 2.a 2π 2.a π 3.a2 A π 3.a B C D 3 R Câu Tính nguyên hàm cos 3xdx 1 A sin 3x + C B sin 3x + C C −3 sin 3x + C D − sin 3x + C 3 Câu Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 30 B 105 C 210 D 225 Câu 10 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn số phức z thỏa mãn z + 2i = đường trịn Tâm đường trịn có tọa độ A (0; −2) B (2; 0) C (0; 2) D (−2; 0) Câu 11 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 C D A B Trang 1/5 Mã đề 001 x−2 y−1 z−1 = = Gọi 2 −3 (P) mặt phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) 11 A B C D 3 Câu 12 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : Câu 13 Tích tất nghiệm phương trình ln2 x + 2lnx − = 1 C D −3 A −2 B Câu 14 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = ( m tham số thực) Có bao nhiêu giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn z1 + z2 = 2? A B C D Câu 15 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: A y′ = πxπ B y′ = xπ−1 C y′ = πxπ−1 D y′ = xπ−1 π Câu 16 Tập nghiệm bất phương trình x+1 < A [1; +∞) B (1; +∞) C (−∞; 1) D (−∞; 1] − 2i (1 − i)(2 + i) Câu 17 Phần thực số phức z = + 2−i + 3i 11 11 29 29 B − C D − A 13 13 13 13 Câu 18 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A z · z = a2 − b2 B z − z = 2a C |z2 | = |z|2 D z + z = 2bi + 2i + i2017 có tổng phần thực phần ảo Câu 19 Số phức z = 2−i A -1 B C D Câu 20 Cho số phức z = + 5i Tìm số phức w = iz + z A w = − 3i B w = + 7i C w = −7 − 7i D w = −3 − 3i Câu 21 Với số phức z, ta có |z + 1|2 A z + z + B |z|2 + 2|z| + D z · z + z + z + C z2 + 2z + Câu 22 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D Câu 23 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = 2i B P = C P = D P = + i Câu 24 Đẳng thức đẳng thức sau? A (1 + i)2018 = −21009 B (1 + i)2018 = 21009 C (1 + i)2018 = −21009 i D (1 + i)2018 = 21009 i Câu 25 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực là−3 phần ảo −2i B Phần thực −3 phần ảo là−2 C Phần thực là3 phần ảo D Phần thực phần ảo 2i R0 Câu 26 Giá trị −1 e x+1 dx A e − B − e C −e D e Câu 27 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) tọa độ trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là: A C(−1; −4; 4) B C(−1; 0; −2) C C(1; 0; 2) D C(1; 4; 4) Trang 2/5 Mã đề 001 Câu 28 Hàm số f (x) thoả mãn f ′ (x) = x x là: A x + x+1 x+1 + C B x2 x + C C (x − 1) x + C D (x + 1) x + C Câu 29 F(x) nguyên hàm hàm số y = xe x Hàm số sau F(x)? 2 2 A F(x) = − e x + C B F(x) = e x + C F(x) = (e x + 5) D F(x) = − (2 − e x ) 2 2 Câu 30 Cho hàm sốRy = f (x) có đạo hàm, liên tục R f (x) > x ∈ [0; 5] Biết f (x)· f (5− x) = 1, tính tích phân I = + f (x) 5 A I = B I = 10 C I = D I = R8 R4 R4 Câu 31 Biết f (x) = −2; f (x) = 3; g(x) = Mệnh đề sau sai? R8 R8 A f (x) = B f (x) = −5 R4 R4 C [ f (x) + g(x)] = 10 D [4 f (x) − 2g(x)] = −2 R Câu 32 Tìm nguyên hàm I = xcosxdx x A I = xsinx − cosx + C B I = x2 sin + C x C I = x2 cos + C D I = xsinx + cosx + C −−→ Câu 33 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) B(2; 2; 1) Vectơ AB có tọa độ A (−1; −1; −3) B (3; 3; −1) C (3; 1; 1) D (1; 1; 3) z số thực Giá trị lớn Câu 34 Cho số phức z thỏa mãn z số thực ω = + z2 biểu thức M = |z + − i| √ √ A B 2 C D Câu 35 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ A P = C P = B P = D P = 2 √ 2 Câu 36 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ 2 2 2 2 A |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = B |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = √ C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = Câu 37 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng?  2  2 A P = (|z| − 4)2 B P = |z|2 − C P = (|z| − 2)2 D P = |z|2 − Câu 38 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 Câu 39 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A B C 13 D Câu 40 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Trang 3/5 Mã đề 001 Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm P bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z B điểm Q C điểm R D điểm S Câu 41 Cho số phức z (không phải số thực, số ảo) thỏa mãn Khi mệnh đề sau đúng? A < |z| < B < |z| < 2 C < |z| < 2 D + z + z2 số thực − z + z2 < |z| < 2 Câu 42 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ A √ C D B 2 Câu 43 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể √ tích khối trụ (T ) lớn √ √ √ 400π 250π 500π 125π A B C D 9 Câu 44 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính tổng M + m A B C D Câu 45 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2a+2b+3c B P = 26abc C P = 2a+b+c D P = 2abc Câu 46 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 25 27 23 29 B C D A 4 4 Câu 47 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 32π 31π 33π A 6π B C D 5 Câu 48 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + √ z2 − 4x − 6y + 2z − = √ A R = 14 B R = C R = D R = 15 Câu 49 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = − (x2 − 2x)dx + (x2 − 2x)dx B C D R3 R2 |x2 − 2x|dx = (x2 − 2x)dx − R3 1 R3 R2 R3 1 R3 R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx |x2 − 2x|dx (x2 − 2x)dx Câu 50 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = B m = C m = m = −16 D m = m = −10 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 11/04/2023, 10:50

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN