1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (850)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 121,8 KB

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y = x[.]

Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x3 + x2 y = x2 +3x+mcắt nhiều điểm A −2 ≤ m ≤ B < m < C −2 < m < D m = Câu Cho hình trụ có hai đáy hai đường trịn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 √ Câu Đạo hàm hàm số y = log 3x − là: 2 A y′ = B y′ = C y′ = D y′ = (3x − 1) ln (3x − 1) ln 3x − ln 3x − ln Câu Cho x, y, z ba số thực khác thỏa mãn x = 5y = 10−z Giá trị biểu thức A = xy + yz + zxbằng? A B C D Câu Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = 52 B yCD = 36 C yCD = −2 D yCD = Câu Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 B C D − A 6 Câu Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A π B 3π C 2π D 4π Câu Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = −5 B f (−1) = −1 C f (−1) = D f (−1) = −3 Câu Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d < R B d = C d = R D d > R Câu 10 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (−6; 7) B (7; −6) C (7; 6) D (6; 7) Câu 11 Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) √ √ √ √ 3 A a B 2a C a D a 3 Câu 12 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) A B C D 2 Câu 13 Trong không gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 90◦ B 60◦ C 45◦ D 30◦ Trang 1/5 Mã đề 001 Câu 14 Xét số phức z thỏa mãn z − − 4i = z Gọi M m giá trị lớn giá trị nhỏ z Giá trị M + m2 √ √ A 18 + B 28 C 14 D 11 + 800π Gọi A B hai điểm thuộc Câu 15 Cho khối nón có đỉnh S , chiều cao thể tích đường trịn đáy cho AB = 12, khoảng cách từ tâm đường tròn đáy đến mặt phẳng (S AB) √ √ 24 B C D A 24 Câu 16 Cho số phức z = + 9i, phần thực số phức z2 A B 85 C 36 D −77 Câu 17 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = 2i B P = + i C P = D P = (1 + i)(2 − i) Câu 18 Mô-đun số phức z = √ √ + 3i C |z| = D |z| = A |z| = B |z| = Câu 19 biểu thức |z1 + z1 z2 | √ √ Cho số phức z1 = + 2i, √ z2 = − i Giá trị √ A 130 B 10 C 30 D 10 Câu 20 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A B −9 C 10 D −10 Câu 21 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A −7 B −3 C D Câu 22 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 − 10i B 11 + 2i C −3 + 2i D −3 − 2i Câu 23 Đẳng thức đẳng thức sau? A (1 + i)2018 = −21009 i B (1 + i)2018 = −21009 C (1 + i)2018 = 21009 i D (1 + i)2018 = 21009 Câu 24 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Câu 25 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? B z − z = 2a C |z2 | = |z|2 D z · z = a2 − b2 A z + z = 2bi Câu R26 Mệnh đề sau sai? A R f ′ (x) = f (x) + CR với mọiR hàm số f (x) có đạo hàm liên tục R B R ( f (x) + g(x)) R = f (x) + g(x), với hàm số f (x); g(x) liên tục R C R k f (x) = k f (x)R với mọiRhằng số k với hàm số f (x) liên tục R D ( f (x) − g(x)) = f (x) − g(x), với hàm số f (x); g(x) liên tục R Câu 27 Cho hàmR số f (x) liên tục khoảng (−2; 3) Gọi F(x) nguyên hàm f (x) khoảng (−2; 3) Tính I = −1 [ f (x) + 2x], biết F(−1) = F(2) = A I = B I = C I = D I = 10 Câu 28 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) tọa độ trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là: A C(−1; 0; −2) B C(1; 0; 2) C C(−1; −4; 4) D C(1; 4; 4) Trang 2/5 Mã đề 001 Câu 29 Cho A 12 R1 f (x) = R1 R v a` g(x) = B −3 R1 [ f (x) − 2g(x)] C D −8 Câu 30 Cho hàm số f (x) có đạo hàm đoạn [−1; 2] f (−1) = 2023, f (2) = −1 Tích phân bằng: A 2024 B C −2024 D 2025 R4 R4 R3 Câu 31 Cho hàm số f (x) liên tục R f (x) = 10, f (x) = Tích phân f (x) A B C D R2 −1 f ′ (x) Câu 32 Hàm số F(x) = sin(2023x) nguyên hàm hàm số cos(2023x) 2023 D f (x) = −2023cos(2023x) A f (x) = cos(2023x) B f (x) = − C f (x) = 2023cos(2023x) Câu 33 Tìm nguyên hàm I = R xcosxdx x B I = x2 sin + C x C I = xsinx + cosx + C D I = x cos + C √ điểm A hình vẽ bên điểm Câu 34 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = biểu diễn z A I = xsinx − cosx + C Biết điểm biểu diễn số phức ω = số phức ω A điểm M bốn điểm M, N, P, Q Khi điểm biểu diễn iz B điểm P C điểm N D điểm Q Câu 35 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng?  2  2 A P = |z|2 − B P = (|z| − 2)2 C P = |z|2 − D P = (|z| − 4)2 2z − i Mệnh đề sau đúng? + iz A |A| > B |A| < C |A| ≤ D |A| ≥ √ Giá trị lớn biểu thức Câu 37 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = √ Câu 38 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 A ≤ |z| ≤ B < |z| < C |z| < D |z| > 2 2 Câu 36 Cho số phức z thỏa mãn |z| ≤ ĐặtA = Câu 39 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D 2 √ Câu 40 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a2 + b2 + c2 + ab + bc + ca B C a + b + c D a2 + b2 + c2 − ab − bc − ca Câu 41 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i B |w|min = C |w|min = D |w|min = A |w|min = 2 Trang 3/5 Mã đề 001 Câu 42 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a + 2b √ √ √ √ A B 15 C 10 D √ 2x − x2 + có số đường tiệm cận đứng là: Câu 43 Đồ thị hàm số y = x2 − A B C D Câu 44 Chọn mệnh đề mệnh đề sau: A Nếu a > a x > ay ⇔ x > y B Nếu a > a x > ay ⇔ x < y C Nếu a < a x > ay ⇔ x < y D Nếu a > a x = ay ⇔ x = y Câu 45 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −2 B C D −4 Câu 46 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 47 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 + sin 3x)5 x+cos3x ln B y′ = (1 − sin 3x)5 x+cos3x ln C y′ = (1 − sin 3x)5 x+cos3x ln D y′ = x+cos3x ln Câu 48 Hàm số hàm số sau đồng biến R A y = x3 + 3x2 + 6x − C y = −x3 − x2 − 5x 4x + x+2 D y = x4 + 3x2 B y = Câu 49 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường tròn đáy nằm mặt cầu (S ) Thể tích khối trụ (T ) lớn √ √ √ √ 400π 125π 500π 250π A B C D 9 Câu 50 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080253 đồng C 36080255 đồng B 36080254 đồng D 36080251 đồng Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 11/04/2023, 10:49