Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Gọi S (t) là diện tích hình phẳng giới hạn bởi các đường y = 1 (x + 1)(x[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Gọi S (t) diện tích hình phẳng giới hạn đường y = t(t > 0) Tìm lim S (t) t→+∞ A ln − ; y = 0; x = 0; x = (x + 1)(x + 2)2 1 B − ln − C − ln D ln + 2 2x + 2017 Câu Cho hàm số y = (1) Mệnh đề đúng? x + A Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng B Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng C Đồ thị hàm số (1) khơng có tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 D Đồ thị hàm số (1) khơng có tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = Câu Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = B f (−1) = −5 C f (−1) = −1 D f (−1) = −3 Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 B C D A log √a Câu bằng? √ Cho a > a , Giá trị a A B C D Câu Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A B C D Câu Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 m2 − 12 4m2 − m2 − m2 − 12 B C D A m 2m 2m 2m R Câu Tính nguyên hàm cos 3xdx 1 A − sin 3x + C B −3 sin 3x + C C sin 3x + C D sin 3x + C 3 ′ ′ ′ Câu Cho khối lăng trụ đứng ABC · A B C √ có đáy ABC tam giác vuông cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a, thể tích khối lăng trụ cho √ √ √ √ 3 3 B a C a D a A 2a Câu 10 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: 1 ln3 A y′ = B y′ = C y′ = D y′ = − x xln3 x xln3 Câu 11 Có cặp số nguyên (x; y) thỏa mãnlog3 (x2 + y2 + x) + log2 (x2 + y2 ) ≤ log3 x + log2 (x2 + y2 + 24x)? A 48 B 89 C 49 D 90 Trang 1/5 Mã đề 001 Câu 12 Tập nghiệm bất phương trình x+1 < A (−∞; 1) B (1; +∞) C [1; +∞) D (−∞; 1] Câu 13 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: A y′ = xπ−1 B y′ = πxπ C y′ = πxπ−1 D y′ = π−1 x π Câu 14 Tích tất nghiệm phương trình ln2 x + 2lnx − = 1 A −3 B −2 C D Câu 15 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) B(3; 4; 6) Xét điểm M thay đổi cho tam giác OAM khơng có góc tù có diện tích 15 Giá trị nhỏ độ dài đoạn thẳng MB thuộc khoảng đây? A (2; 3) B (6; 7) C (3; 4) D (4; 5) Câu 16 Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n3 = (1; 1; 1) B → n2 = (1; −1; 1) C → n4 = (1; 1; −1) D → n1 = (−1; 1; 1) Câu 17 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực C Mô-đun số phức z số thực dương B Mô-đun số phức z số thực không âm D Mô-đun số phức z số phức Câu 18 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 − 2i B −3 + 2i C −3 − 10i D 11 + 2i 2(1 + 2i) = + 8i Mô-đun số phức w = z + i + Câu 19 Cho số phức z thỏa mãn (2 + i)z + 1+i A B 13 C D Câu 20 Những số sau vừa số thực vừa số ảo? A B Chỉ có số C C.Truehỉ có số D Khơng có số Câu 21 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A N(2; 3) B P(−2; 3) C M(2; −3) D Q(−2; −3) Câu 22 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A −21008 B −21008 + C 21008 D −22016 Câu 23 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A −3 B −7 C D 2017 (1 + i) Câu 24 Số phức z = có phần thực phần ảo đơn vị? 21008 i A B C D 21008 Câu 25 Cho hai √ số phức z1 + z2 √ số phức z1 = + i z2 = − 3i Tính mơ-đun A |z1 + z2 | = 13 B |z1 + z2 | = C |z1 + z2 | = D |z1 + z2 | = Câu 26 Phương trình mặt phẳng qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n = (−2; 1; −1) A −2x + y − z − = B −2x + y − z + = C 2x + y − z − = D −2x + y − z + = Câu 27 Hàm số y = F(x) nguyên hàm hàm số y = f (x) Hãy chọn khẳng định A F ′ (x) + C = f (x) B F(x) = f ′ (x) C F ′ (x) = f (x) D F(x) = f ′ (x) + C R2 Câu 28 Cho hàm số f (x) có đạo hàm đoạn [−1; 2] f (−1) = 2023, f (2) = −1 Tích phân −1 f ′ (x) bằng: A B −2024 C 2025 D 2024 Câu 29 Hàm số F(x) = sin(2023x) nguyên hàm hàm số A f (x) = cos(2023x) C f (x) = 2023cos(2023x) B f (x) = − cos(2023x) 2023 D f (x) = −2023cos(2023x) Trang 2/5 Mã đề 001 R0 e x+1 dx B e − R + lnx dx(x > 0) Câu 31 Nguyên hàm x A x + ln2 x + C B ln2 x + lnx + C Câu 32 Hàm số f (x) thoả mãn f ′ (x) = x x là: Câu 30 Giá trị A −e x+1 C − e D e C x + ln2 x + C D ln2 x + lnx + C C (x − 1) x + C D (x + 1) x + C x+1 R4 R4 R3 Câu 33 Cho hàm số f (x) liên tục R f (x) = 10, f (x) = Tích phân f (x) A B C D √ √ √ 42 √ Câu 34 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z A < |z| < B < |z| < C < |z| < D < |z| < 2 Câu 35 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ B 15 C D A 10 A x + + C −1 B x2 x + C Câu 36 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z √2 | √ √ B P = 26 C P = 34 + D P = + A P = Câu 37 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ của√biểu thức T = |z + 1| + 2|z − 1| A P = 2016 B P = −2016 C max T = D P = Câu 38 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu !diễn số phức thuộc tập hợp!nào sau đây? ! ! 9 A ; B ; +∞ C ; D 0; 4 4 Câu 39 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A 13 B C D √ điểm A hình vẽ bên điểm Câu 40 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm Q B điểm P bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm M D điểm N z Câu 41 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức M = |z + − i| √ √ A B C D 2 Câu 42 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = (|z| − 2)2 B P = |z|2 − C P = (|z| − 4)2 D P = |z|2 − Câu 43 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ = 2a Gọi α số đo góc DB′ Tính giá trị cos α.√ √ hai đường thẳng AC √ A B C D 2 Trang 3/5 Mã đề 001 Câu 44 Biết π R2 sin 2xdx = ea Khi giá trị a là: A ln B C − ln D Câu 45 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + 2n + m 3mn + n + C log2 2250 = n 2mn + n + n 2mn + n + D log2 2250 = n A log2 2250 = B log2 2250 = Câu 46 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), S A = 2a Gọi α số đo góc đường thẳng S B mp(S AC) Tính giá trị sin α √ √ √ 15 15 A B C D 10 Câu 47 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRh + πR2 B S = πRl + 2πR2 C S = 2πRl + 2πR2 D S = πRl + πR2 Câu 48 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc với mặt phẳng (ABC), diện tích tam giác S BC a2 Tính thể tích khối chóp S ABC √ √ √ √ a3 15 a3 a3 15 a3 15 A B C D 16 Câu 49 Chọn mệnh đề mệnh đề sau: A R3 |x2 − 2x|dx = − B R3 R3 D R2 R3 (x2 − 2x)dx |x − 2x|dx = (x − 2x)dx − 2 R3 (x2 − 2x)dx R3 R2 |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx R3 (x2 − 2x)dx + 1 C R2 R2 |x − 2x|dx = |x − 2x|dx − 2 R3 |x2 − 2x|dx d Câu 50 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ √ A a B 2a C a D a Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001