Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề thi 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d x −[.]
Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề thi 001 Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : y+2 z x−1 = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vuông góc với d A (P) : x − 2y − = B (P) : x − y + 2z = C (P) : x − y − 2z = D (P) : x + y + 2z = Câu Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tiếp tam giác BCD và√có chiều cao chiều√cao tứ diện √ √ π 3.a2 π 2.a2 2π 2.a2 A π 3.a B C D 3 Câu Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường tròn có bán kính lớn A m = B m = −7 C m = D m = Câu Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 B − C D A 6 Câu Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(5; 9; 5) B C(3; 7; 4) C C(−3; 1; 1) D C(1; 5; 3) Câu Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m ≥ B m ≥ C m > D m ≥ −1 Câu Cho số phức z = + 9i, phần thực số phức z2 A 36 B 85 C −77 D = y−2 = z+3 Điểm thuộc d? Câu Trong không gian Oxyz, cho đường thẳng d : x−1 −1 −2 A N(2; 1; 2) B Q(1; 2; −3) C M(2; −1; −2) D P(1; 2; 3) Câu Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho B 23 πrl2 C πrl D 2πrl A 13 πr2 l Câu 10 Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cự trị? A B C 17 D 15 Câu 11 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A B C −1 D Câu 12 Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox 16 A 15 B 169 C 16π D 16π 15 Câu 13 Thiết diện qua trục hình nón tam giác cạnh có độ dài a Tính diện tích tồn phần S hình nón A S = πa2 B S = πa2 C S = πa2 D S = πa2 4 Trang 1/5 Mã đề 001 x−2 y−6 z+2 Câu 14 Trong không gian Oxyz, cho hai đường thẳng chéo d1 : = = −2 x−4 y+1 z+2 d2 : = = Gọi mặt phẳng (P) chứa d1 (P)song song với đường thẳng d2 Khoảng −2 cách từ điểm M(1; 1; 1) đến (P) √ B 10 C √ D √ A √ 10 53 Câu 15 Cho cấp số nhân (un ) với u1 = công bội q = −2 Số hạng thứ cấp số nhân A 192 B −192 C 384 D −384 Câu 16 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 12 B 27 C 18 D 21 Câu 17 Tính thể tích V khối trịn xoay quay hình phẳng giới hạn đồ thị (C) : y = − x2 trục hoành quanh trục Ox 7π 22π 512π B V = C V = D V = A V = 15 Câu 18 Cho hàm số y = f (x) có bảng biến thiên sau Hàm số y = f (x) nghịch biến khoảng khoảng đây? A (−∞ ; −2) B (0 ; +∞) C (−1 ; 4) D (−2 ; 0) Câu 19 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 1 A √ B C √ D √ 13 Câu 20 Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A π B 4π C 3π D 2π −2 − 3i z + = Câu 21 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện − 2i √ A max |z| = B max |z| = C max |z| = D max |z| = Câu 22 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = 22 B r = C r = D r = 20 Câu 23 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = Tìm giá trị lớn biểu thức T = |z + 1| √ + 2|z − 1| √ √ √ A max T = B max T = 10 C max T = D max T = z+i+1 Câu 24 Tìm tập hợp điểm M biểu diễn số phức z cho w = số ảo? z + z + 2i A Một đường tròn B Một đường thẳng C Một Elip D Một Parabol √ Câu 25 Biết số phức z thỏa mãn |z − − 4i| = biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn Tính |z| √ √ √ A |z| = 50 B |z| = C |z| = 33 D |z| = 10 Câu 26 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 A √ B √ C √ D 13 Trang 2/5 Mã đề 001 Câu 27 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện w = (1 − 2i)z + 3, biết z số phức thỏa mãn |z + 2| = A (x − 5)2 + (y − 4)2 = 125 B x = 2 C (x − 1) + (y − 4) = 125 D (x + 1)2 + (y − 2)2 = 125 Câu 28 Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A 4π B 2π C π D 3π Câu 29 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 4π B π C 2π D 3π z+i+1 số ảo? Câu 30 Tìm tập hợp điểm M biểu diễn số phức z cho w = z + z + 2i A Một đường tròn B Một Parabol C Một đường thẳng D Một Elip Câu 31 Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A B C D 10 Câu 32 Cho số phức z thỏa mãn |i + 2z| = |z − 3i| Tập hợp điểm biểu diễn số phức w = (1 − i)z + đường thẳng có phương trình A x − y + = B x − y + = C x + y − = D x + y − = → − → − → − → − Câu 33 Cho vectơ u = (u ; u ; u ) v = (v ; v ; v ), u v = A u1 v2 + u2 v3 + u3 v1 = −1 C u1 v1 + u2 v2 + u3 v3 = 1 3 B u1 + v1 + u2 + v2 + u3 + v3 = D u1 v1 + u2 v2 + u3 v3 = Câu 34 √ 1; 1), độ dài đoạn ABbằng √ Trong không gian cho √ hai điểm A(−1; 2; 3), B(0; √ B C D 10 A 12 − −a = (1; −1; 2), → −c = (−2; 5; 1), vectơ Câu 35 Trong không gian Oxyz cho ba vectơ → b = (3; 0; −1), → → − → − −a + b − → −c có tọa độ m =→ A (−6; 6; 0) B (6; 0; −6) C (6; −6; 0) D (0; 6; −6) Câu 36 Trong không gian Oxyz, cho điểm M nằm mặt phẳng (Oxy)sao cho M không trùng với gốc tọa độ không nằm hai trục Ox, Oy, tọa độ điểm M (a, b, c , 0) A (0; 0; c) B (0; b; a) C (a; b; 0) D (a; 1; 1) Câu 37 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 5; 2),B(3; 7; −4),C(2; 0; −1) Tọa độ hình chiếu trọng tâm tam giác ABC lên mặt phẳng (Oyz) A (2; 0; 0) B (0; 4; −1) C (0; 4; 4) D (0; 4; 1) Câu 38 Trong không gian với hệ trục tọa độ Oxyz, cho A(−2; 1; −1), B(2; 0; 1), C(1; −3; 2) Giá trị −−→ −−→ tích vơ hướng AB.AC A −22 B 22 C 10 D 14 Câu 39 Cho hàm số y = −x4 − x2 + Trong khẳng định sau, khẳng định sai? A Đồ thị hàm số cắt trục tung điểm (0; 1) B Điểm cực tiểu hàm số (0; 1) C Đồ thị hàm số có điểm cực đại D Đồ thị hàm số khơng có tiệm cận Câu 40 Khối đa diện khối đa diện sau có tính chất: “Mỗi mặt khối đa diện tam giác đỉnh đỉnh chung ba mặt ”? A Khối lập phương B Khối tứ diện C Khối bát diện D Khối mười hai mặt Câu 41 Cho hàm số y = x3 − 3x2 − 9x − Trong khẳng định sau, khẳng định sai? A Hàm số có hai điểm cực trị B Giá trị cực tiểu hàm số C Giá trị cực đại hàm số D Hàm số có điểm cực đại điểm cực tiểu Trang 3/5 Mã đề 001 Câu 42 Cho hàm số y = x+1 có đồ thị (C) đường thẳng d có phương trình y = − x Tìm số giao x−1 điểm (C) d A B C D Câu 43 Điểm cực đại đồ thị hàm số y = x4 − 2x2 + A (1; 2) B (0; 3) C x = D x = Câu 44 Tìm giá trị nhỏ hàm số f (x) = 2x3 − 3x2 − 12x + 10 đoạn [−3; 3] A −10 B C −35 D 17 Câu 45 Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ 3a 5a a 2a A B C √ D √ 5 Câu 46 Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m ≤ B m ≥ C m < D m > Câu 47 Một mặt cầu có diện tích 4πR2 thể tích khối cầu A 4πR3 B 3 πR 4 D πR3 C πR3 Câu 48 Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số đồng biến R B Hàm số nghịch biến R C Hàm số nghịch biến (0; +∞) D Hàm số đồng biến (−∞; 0) ∪ (0; +∞) Câu 49 Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + x−1 A y = sin x B y = C y = x3 − 2x2 + 3x + D y = tan x Câu 50 Cho hình chóp S ABCcó cạnh đáy a cạnh bên b Thể tích khối chóp là: q √ √ 2 a b2 − 3a2 3ab A VS ABC = B VS ABC = 12 12 √ √ a2 3b2 − a2 3a b D VS ABC = C VS ABC = 12 12 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001