Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình trụ có hai đáy là hai đường tròn (O; r) và (O′; r) Một hình nón[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho hình trụ có hai đáy hai đường trịn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Câu Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m ≥ B m > C m ≥ D m ≥ −1 Câu Cho x, y, z ba số thực khác thỏa mãn x = 5y = 10−z Giá trị biểu thức A = xy + yz + zxbằng? A B C D Câu Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = −7 B m = C m = D m = Câu Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại có chiều cao chiều√cao tứ diện √ tiếp tam giác BCD √ √ 2π 2.a2 π 3.a2 π 2.a2 B C D π 3.a2 A 3 2x + 2017 (1) Mệnh đề đúng? Câu Cho hàm số y = x + A Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng B Đồ thị hàm số (1) tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = C Đồ thị hàm số (1) khơng có tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 D Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng Câu Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A B −1 C D π Câu Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện√tích lớn bằng? √ √ 3 3 2 A (m ) B 3(m ) C (m ) D (m ) Câu Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (7; 6) B (−6; 7) C (7; −6) D (6; 7) Câu 10 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = ( m tham số thực) Có bao nhiêu giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn z1 + z2 = 2? A B C D Câu 11 Cho hàm số f (x) = cosx + x Khẳng định đúng? R R x2 + C A f (x) = sinx + x2 + C B f (x) = −sinx + Trang 1/5 Mã đề 001 R x2 C f (x) = sinx + + C D f (x) = −sinx + x2 + C R2 R2 Câu 12 Nếu f (x) = [ f (x) − 2] A B C D −2 R Câu 13 Đồ thị hàm số có dạng đường cong hình bên? x−3 A y = B y = x3 − 3x − C y = x2 − 4x + D y = x4 − 3x2 + x−1 Câu 14 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trìnhlà: x = + 2t x = + 2t x = + t x = + 2t y = −1 + 3t y = + 3t y = + 2t y = −1 + t A B C D z = −1 + t z = −1 + t z = + 3t z = −1 + 3t Câu 15 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Có giá trị ngun tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt? A B C D Câu 16 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn số phức z thỏa mãn z + 2i = đường tròn Tâm đường trịn có tọa độ A (2; 0) B (0; −2) C (−2; 0) D (0; 2) 1 25 Câu 17 Cho số phức z thỏa = + Khi phần ảo z bao nhiêu? z + i (2 − i)2 A −31 B −17 C 17 D 31 Câu 18 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A −22016 B 21008 C −21008 + D −21008 Câu 19 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực phần ảo 2i B Phần thực −3 phần ảo là−2 C Phần thực là−3 phần ảo −2i D Phần thực là3 phần ảo Câu 20 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A N(2; 3) B P(−2; 3) C M(2; −3) D Q(−2; −3) 4(−3 + i) (3 − i)2 Câu 21 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ √ √ − 2i √ A |w| = B |w| = 48 C |w| = 85 D |w| = Câu 22 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A B C −3 D −7 Câu 23 √ z(1 + 3i) = 17 + i Khi mơ-đun số phức w = 6z − 25i √ Cho số phức z thỏa mãn A 29 B C 13 D Câu 24 Tính mơ-đun số phức z√thỏa mãn z(2 − i) + 13i = √ 34 A |z| = 34 B |z| = C |z| = 34 √ D |z| = 34 Câu 25 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A −10 B 10 C −9 D Câu 26 F(x) nguyên hàm hàm số y = xe x Hàm số sau F(x)? 1 2 A F(x) = − e x + C B F(x) = − (2 − e x ) C F(x) = (e x + 5) D F(x) = e x + 2 2 2 Trang 2/5 Mã đề 001 R4 R4 R3 Câu 27 Cho hàm số f (x) liên tục R f (x) = 10, f (x) = Tích phân f (x) A B C D R2 Câu 28 Tính tích phân I = xe x dx A I = 3e2 − 2e B I = e2 C I = −e2 D I = e R2 Câu 29 Tích phân I = (2x − 1) có giá trị bằng: A B C D Câu 30 Trong không gian Oxyz, điểm đối xứng với điểm B(3; −1; 4) qua mặt phẳng (xOz) có tọa độ A (3; −1; −4) B (−3; −1; −4) C (−3; −1; 4) D (3; 1; 4) R Câu 31 Tìm nguyên hàm I = xcosxdx x B I = xsinx + cosx + C A I = x2 cos + C x C I = xsinx − cosx + C D I = x2 sin + C Câu 32 Tìm nguyên hàm hàm số f (x) = √ 2x + R R √ A f (x)dx = √ + C B f (x)dx = 2x + + C 2x + R R √ 1√ C f (x)dx = 2x + + C D f (x) = 2x + + C R1 R R1 R1 Câu 33 Cho f (x) = v a` g(x) = [ f (x) − 2g(x)] A −3 B −8 C D 12 √ 2 Mệnh đề Câu 34 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = đúng? √ A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = √2 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3 z Câu 35 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| bằng? thức + |z|2 √ 1 C D A B √ Câu 36 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A B a + b + c 2 C a + b + c + ab + bc + ca D a2 + b2 + c2 − ab − bc − ca √ √ √ 42 √ Câu 37 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z A < |z| < B < |z| < C < |z| < D < |z| < 2 2 Câu 38 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z1 √ z2 √ A B C √ D 2 Câu 39 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A B 13 C D Trang 3/5 Mã đề 001 Câu 40 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i D |w|min = A |w|min = B |w|min = C |w|min = 2 Câu 41 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C Câu 42 Cho số phức z thỏa mãn z số thực ω = biểu thức M = |z + − i| A √ B 2 D z số thực Giá trị lớn + z2 C D √ Câu 43 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) Giả sử phương trình mặt phẳng (P) có dạng khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) ax + by + cz + = Tính giá trị abc A B −4 C −2 D Câu 44 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 45 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080255 đồng C 36080253 đồng B 36080254 đồng D 36080251 đồng Câu 46 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 12π B 6π C 8π Câu 47 Tính tích tất nghiệm phương trình (log2 (4x))2 + log2 ( A 128 B C 32 D 10π x2 )=8 D 64 Câu 48 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m > m < − B m > m < −1 C m < −2 D m > x2 + mx + đạt cực tiểu điểm x = x+1 C Khơng có m D m = Câu 49 Tìm tất giá trị tham số m để hàm số y = A m = B m = −1 Câu 50 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2abc B P = 26abc C P = 2a+b+c D P = 2a+2b+3c Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001