Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tập nghiệm của bất phương trình log1 2 (x − 1) ≥ 0 là A (−∞; 2] B (1; 2][.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tập nghiệm bất phương trình log (x − 1) ≥ là: A (−∞; 2] B (1; 2] C (1; 2) √ sin 2x Câu Giá trị lớn hàm số y = ( π) R bằng? √ A B C π D [2; +∞) D π Câu Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = −7 C m = D m = Câu Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện tích lớn bằng? √ √ √ 3 3 2 A (m ) B 3(m ) C (m ) D (m ) √ Câu Đạo hàm hàm số y = log 3x − là: 2 A y′ = B y′ = C y′ = D y′ = (3x − 1) ln (3x − 1) ln 3x − ln 3x − ln √ x Câu Tìm nghiệm phương trình x = ( 3) A x = −1 B x = C x = D x = Câu Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 A < m < B Không tồn m C m < D m < 3 ; y = 0; x = 0; x = Câu Gọi S (t) diện tích hình phẳng giới hạn đường y = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ A − ln 2 B ln + C − ln − D ln − Câu Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (2; 4; 6) B (−2; −4; −6) C (−1; −2; −3) D (1; 2; 3) x−1 y−2 z+3 Câu 10 Trong không gian Oxyz, cho đường thẳng d : = = Điểm thuộc −1 −2 d? A Q(1; 2; −3) B P(1; 2; 3) C N(2; 1; 2) D M(2; −1; −2) Câu 11 Cho hình chóp S ABC có đáy tam giác vng B, S A vng góc với đáy S A = AB (tham khảo hình bên) Góc hai mặt phẳng (S BC) (ABC) A 45◦ B 90◦ C 30◦ D 60◦ Trang 1/5 Mã đề 001 800π Gọi A B hai điểm thuộc đường tròn đáy cho AB = 12, khoảng cách từ tâm đường tròn đáy đến mặt phẳng (S AB) √ √ 24 A B C D 24 Câu 13 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A B C −1 D Câu 12 Cho khối nón có đỉnh S , chiều cao thể tích Câu 14 Phần ảo số phức z = − 3i A −3 B C −2 D x−2 y−1 z−1 Câu 15 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : = = Gọi 2 −3 (P) mặt phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) 11 B C D A 3 Câu 16 Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox 16π 16 16 16π A B C D 15 15 Câu 17 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = + i B P = C P = 2i D P = (1 + i)(2 + i) (1 − i)(2 − i) + Trong tất kết luận sau, kết Câu 18 Cho số phức z thỏa mãn z = 1−i 1+i luận đúng? A z = z B z số ảo C |z| = D z = z − 2i (1 − i)(2 + i) Câu 19 Phần thực số phức z = + 2−i + 3i 29 29 11 11 A B − C − D 13 13 13 13 Câu 20 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D Câu 21 Đẳng thức đẳng thức sau? A (1 + i)2018 = 21009 B (1 + i)2018 = 21009 i C (1 + i)2018 = −21009 D (1 + i)2018 = −21009 i z2 Câu 22 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ A B 11 C D 13 Câu 23 Tính mô-đun số phức z thỏa mãn z(2 − i) + 13i =√1 √ √ 34 34 A |z| = 34 B |z| = 34 C |z| = D |z| = 3 Câu 24 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực B Mô-đun số phức z số phức C Mô-đun số phức z số thực dương D Mô-đun số phức z số thực không âm Câu 25 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A −9 B C 10 D −10 Trang 2/5 Mã đề 001 Câu 26 Cho f (x) hàm số liên tục [a; b] (với a < b ) F(x) nguyên hàm f (x) [a; b].R Mệnh đề đúng? a A b f (x) = F(b) − F(a) B Diện tích S hình phẳng giới hạn hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) trục hoành tính theo cơng thức S = F(b) − F(a) b Rb C a f (2x + 3) = F(2x + 3) a Rb D a k · f (x) = k[F(b) − F(a)] R2 Câu 27 Cho hàm số f (x) có đạo hàm đoạn [−1; 2] f (−1) = 2023, f (2) = −1 Tích phân −1 f ′ (x) bằng: A B 2024 C 2025 D −2024 Câu 28 Tìm hàm số F(x) không nguyên hàm hàm số f (x) = sin2x A F(x) = sin2 x B F(x) = −cos2x C F(x) = − cos2x D F(x) = −cos2 x Câu 29 Cho hàm số f (x) có đạo hàm với x ∈ R f ′ (x) = 2x + Giá trị f (2) − f (1) A −2 B C D Câu 30 Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (α) : 2x − 3y − z − = Điểm không thuộc mặt phẳng (α) A P(3; 1; 3) B N(4; 2; 1) C Q(1; 2; −5) D M(−2; 1; −8) Câu 31 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) tọa độ trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là: A C(1; 0; 2) B C(−1; 0; −2) C C(1; 4; 4) D C(−1; −4; 4) R Câu 32 Tìm nguyên hàm I = xcosxdx x B I = xsinx + cosx + C A I = x2 sin + C x C I = xsinx − cosx + C D I = x2 cos + C Câu 33 Hàm số y = F(x) nguyên hàm hàm số y = f (x) Hãy chọn khẳng định A F(x) = f ′ (x) B F ′ (x) = f (x) C F(x) = f ′ (x) + C D F ′ (x) + C = f (x) Câu 34 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm Q B điểm R bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm S D điểm P Câu 35 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z2 | √ √ √ A P = 26 B P = 34 + C P = D P = + √ √ √ 42 √ Câu 36 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z A < |z| < B < |z| < C < |z| < D < |z| < 2 2 Câu 37 Cho số phức z thỏa mãn |z − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 Câu 38 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − hai nghiệm phức phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ √ 85 97 A T = 13 B T = 13 C T = D T = 3 Trang 3/5 Mã đề 001 Câu 39 Cho số phức z thỏa mãn z + √ A B 13 = Tổng giá trị lớn nhỏ |z| z √ C D Câu 40 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = |z|2 − B P = (|z| − 2)2 C P = (|z| − 4)2 D P = |z|2 − Câu 41 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | Câu 42 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| √ A P = B P = 2016 C P = −2016 D max T = Câu 43 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 29 23 27 25 B C D A 4 4 Câu 44 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m > B m < −2 C m > m < −1 D m > m < − Câu 45 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể tích khối trụ (T ) lớn √ √ √ √ 250π 500π 400π 125π A B C D 9 Câu 46 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (1; 5) B (−3; 0) C (3; 5) D (−1; 1) Câu 47 Cho tứ diện DABC, tam giácABC vng B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính √ √ √ √ 5a 5a 5a 5a A B C D 3 Câu 48 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080255 đồng B 36080251 đồng C 36080253 đồng D 36080254 đồng Câu 49 Hàm số hàm số sau có đồ thị hình vẽ bên A y = x3 − 3x2 B y = −2x4 + 4x2 C y = −x4 + 2x2 Câu 50 Biết a, b ∈ Z cho A R B (x + 1)e2x dx = ( D y = −x4 + 2x2 + ax + b 2x )e + C Khi giá trị a + b là: C D Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001