Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Biết ∫ f (u)du = F(u) +C Mệnh đề nào dưới đây đúng? A ∫ f (2x − 1)dx = 2[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu R1 Biết f (u)du = F(u) + C Mệnh đề R đúng? A f (2x − 1)dx = 2F(2x − 1) + C B f (2x − 1)dx = 2F(x) − + C R R D f (2x − 1)dx = F(2x − 1) + C C f (2x − 1)dx = F(2x − 1) + C Câu Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(1; 5; 3) B C(3; 7; 4) C C(5; 9; 5) D C(−3; 1; 1) R Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D Câu Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tam giác BCD và√có chiều cao chiều cao tứ diện √ √ tiếp √ π 3.a π 2.a2 2π 2.a2 A B C π 3.a D 3 Câu Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vng với cạnh huyền √ 3bằng 2a Tính thể tích3 khối nón √ π 2.a π.a 2π.a3 4π 2.a3 A B C D 3 3 Câu Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 A B C − D 6 Câu Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A B C D √ x Câu Tìm nghiệm phương trình x = ( 3) A x = B x = −1 C x = D x = Câu Cho hình chóp S ABC có đáy tam giác vng B, S A vng góc với đáy S A = AB (tham khảo hình bên) Góc hai mặt phẳng (S BC) (ABC) A 30◦ B 45◦ C 90◦ D 60◦ Câu 10 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: π−1 x π Câu 11 Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox 16π 16 16π 16 A B C D 15 15 Câu 12 Trong khơng gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 90◦ B 60◦ C 30◦ D 45◦ A y′ = xπ−1 B y′ = πxπ C y′ = πxπ−1 D y′ = Câu 13 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) B(3; 4; 6) Xét điểm M thay đổi cho tam giác OAM khơng có góc tù có diện tích 15 Giá trị nhỏ độ dài đoạn thẳng MB thuộc khoảng đây? A (6; 7) B (3; 4) C (4; 5) D (2; 3) Trang 1/5 Mã đề 001 x−2 y−1 z−1 = = Gọi 2 −3 (P) mặt phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) 11 A B C D 3 Câu 14 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : Câu 15 Cho hàm số f (x) = cosx + x Khẳng định đúng? R R x2 A f (x) = −sinx + x2 + C B f (x) = −sinx + + C R R x2 C f (x) = sinx + x2 + C D f (x) = sinx + + C Câu 16 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) 1 A B C D z2 Câu 17 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ D A B 13 C 11 Câu 18 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A 10 B C −10 D −9 Câu 19 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A 21008 B −21008 C −22016 D −21008 + Câu 20 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Câu 21 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực là−3 phần ảo −2i B Phần thực phần ảo 2i C Phần thực là3 phần ảo D Phần thực −3 phần ảo là−2 Câu 22 Trong kết luận sau, kết luận sai A Mô-đun số phức z số phức C Mô-đun số phức z số thực B Mô-đun số phức z số thực không âm D Mô-đun số phức z số thực dương Câu 23 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = 2i B P = C P = D P = + i Câu 24 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A −3 B C D −7 − 2i (1 − i)(2 + i) Câu 25 Phần thực số phức z = + 2−i + 3i 29 11 29 11 A B − C − D 13 13 13 13 R1 Câu 26 Tích phân e−x dx 1 e−1 A − B C D e − e e e Câu 27 Hàm số f (x) thoả mãn f ′ (x) = x x là: A x2 + x+1 x+1 + C B (x + 1) x + C C x2 x + C D (x − 1) x + C Trang 2/5 Mã đề 001 Câu 28 Tìm nguyên hàm F(x) hàm số f (x) = e x+1 , biết F(0) = e A F(x) = e x+1 B F(x) = e x + C F(x) = e2x D F(x) = e x Câu 29 Trong hệ tọa độ Oxyz, cho bốn điểm A(0; 1; 1), B(1; 0; 1), C(0; 0; 1), I(1; 1; 1) Mặt phẳng qua I, song song với mặt phẳng (ABC) có phương trình là: A x − = B y − = C x + y + z − = D z − = Câu 30 Tìm nguyên hàm hàm số f (x) = √ f (x)dx = √ + C 2x + R √ C f (x)dx = 2x + + C A R 2x + R 1√ B f (x)dx = 2x + + C R √ D f (x) = 2x + + C Câu 31 Tìm hàm số F(x) khơng nguyên hàm hàm số f (x) = sin2x A F(x) = sin2 x B F(x) = −cos2x C F(x) = − cos2x D F(x) = −cos2 x R1 R R1 R1 Câu 32 Cho f (x) = v a` g(x) = [ f (x) − 2g(x)] A −8 B C 12 D −3 R4 R4 R3 Câu 33 Cho hàm số f (x) liên tục R f (x) = 10, f (x) = Tích phân f (x) A B C D √ Câu 34 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 B |z| > C |z| < D ≤ |z| ≤ A < |z| < 2 2 √ Câu 35 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a2 + b2 + c2 + ab + bc + ca B a + b + c C D a2 + b2 + c2 − ab − bc − ca Câu 36 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = (|z| − 4)2 B P = (|z| − 2)2 C P = |z|2 − D P = |z|2 − Câu 37 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B 18 C D Câu 38 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ D A B √ C 2 Câu 39 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = B A = −1 C A = + i D A = √ 2 Câu 40 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3√ 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = Câu 41 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A 13 B C D Trang 3/5 Mã đề 001 Câu 42 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | Câu 43 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc với mặt phẳng (ABC), diện tích tam giác S BC a Tính thể tích khối chóp S ABC √ √ √ √ a3 15 a3 a3 15 a3 15 B C D A 16 x2 + mx + đạt cực tiểu điểm x = x+1 C Khơng có m D m = −1 Câu 44 Tìm tất giá trị tham số m để hàm số y = A m = B m = Câu 45 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ 3a 3a 30 3a a 15 B C D A 2 10 x2 Câu 46 Tính tích tất nghiệm phương trình (log2 (4x)) + log2 ( ) = 8 1 1 A B C D 32 64 128 A D = (−1; 4) 3x + x−1 B D = (1; +∞) C D = (−∞; −1] ∪ (1; +∞) D D = (−∞; 0) r Câu 47 Tìm tập xác định D hàm số y = log2 Câu 48 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 − sin 3x)5 x+cos3x ln B y′ = (1 − sin 3x)5 x+cos3x ln C y′ = (1 + sin 3x)5 x+cos3x ln D y′ = x+cos3x ln Câu 49 Chọn mệnh đề mệnh đề sau: R2 R3 R3 A |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx B 1 R3 R2 R3 C R3 D R3 |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx |x2 − 2x|dx = − R2 (x2 − 2x)dx + R3 (x2 − 2x)dx Câu 50 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể tích khối trụ (T ) lớn √ √ √ √ 125π 400π 500π 250π A B C D 9 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001