Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Biết 5∫ 1 dx 2x − 1 = ln T Giá trị của T là A T = 9 B T = √ 3 C T = 3 D[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Biết R5 A T = dx = ln T Giá trị T là: 2x − √ B T = C T = D T = 81 Câu Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A 4π B 3π C 2π D π Câu Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(0; 2; 3) B A(1; 2; 0) C A(0; 0; 3) D A(1; 0; 3) √ Câu Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Khơng có tiệm cận B Khơng có tiệm cận ngang có tiệm cận đứng C Có tiệm cận ngang tiệm cận đứng D Có tiệm cận ngang khơng có tiệm cận đứng Câu Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V B C D A 2 Câu Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x đường thẳng y = x 1 A B C − D 6 √ d = 1200 Gọi K, Câu Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC I √ trung điểm cạnh√CC1 , BB1 Tính khoảng√cách từ điểm I đến mặt phẳng (A1 BK) √ a a a 15 A B C D a 15 Câu Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 m2 − 12 4m2 − m2 − m2 − 12 A B C D m 2m 2m 2m Câu Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (1; 2; 3) B (−1; −2; −3) C (−2; −4; −6) D (2; 4; 6) Câu 10 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) 1 A B C D Câu 11 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d = B d = R C d < R D d > R Câu 12 Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox 16π 16 16π 16 A B C D 15 9 15 Trang 1/5 Mã đề 001 Câu 13 Cho cấp số nhân (un ) với u1 = công bội q = Giá trị u3 1 B C D A 2 R2 R2 Câu 14 Nếu f (x) = [ f (x) − 2] A B −2 C D Câu 15 Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho B πrl C πrl2 D 2πrl A πr2 l 3 Câu 16 Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (2; +∞) B (1; +∞) C (1; 2) D (−∞; 1) 4(−3 + i) (3 − i)2 Câu 17 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ − 2i √ √ √ A |w| = 48 B |w| = 85 C |w| = D |w| = √ Câu 18 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A ≤ m ≤ B m ≥ m ≤ −1 C −1 ≤ m ≤ D m ≥ m ≤ Câu 19 Những số sau vừa số thực vừa số ảo? A Khơng có số B Chỉ có số C D C.Truehỉ có số Câu 20 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i) = − 17i Khi hiệu phần thực phần ảo z A B −3 C −7 D Câu 21 Cho số phức z = + 5i Tìm số phức w = iz + z A w = − 3i B w = −7 − 7i C w = + 7i D w = −3 − 3i Câu 22 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực là3 phần ảo B Phần thực −3 phần ảo là−2 C Phần thực là−3 phần ảo −2i D Phần thực phần ảo 2i Câu 23 Cho số phức z thỏa mãn z(1 + 3i) = 17 + i Khi √ = 6z − 25i √ mơ-đun số phức w D A B 13 C 29 Câu 24 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A Q(−2; −3) B M(2; −3) C N(2; 3) D P(−2; 3) 2(1 + 2i) Câu 25 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A 13 B C D Câu 26 Hàm số F(x) = sin(2023x) nguyên hàm hàm số A f (x) = − cos(2023x) B f (x) = −2023cos(2023x) 2023 C f (x) = cos(2023x) D f (x) = 2023cos(2023x) Câu 27 F(x) nguyên hàm hàm số y = xe x Hàm số sau F(x)? 2 1 2 B F(x) = (e x + 5) C F(x) = − (2 − e x ) D F(x) = − e x + C A F(x) = e x + 2 2 Câu 28 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương trình A x − 2y + 2z − 15 = B x + 2y + 2z + 15 = C x + 2y + 2z − 15 = D x − 2y + 2z + 15 = Câu 29 Phương trình mặt phẳng qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n = (−2; 1; −1) A −2x + y − z + = B −2x + y − z + = C −2x + y − z − = D 2x + y − z − = Trang 2/5 Mã đề 001 Câu 30 Giá trị A −e R0 −1 e x+1 dx B e C e − Câu 31 Tìm nguyên hàm F(x) hàm số f (x) = e x+1 , biết F(0) = e A F(x) = e x + B F(x) = e x+1 C F(x) = e2x D − e D F(x) = e x Câu R32 Mệnh đề nàoRsau sai? R A R ( f (x) + g(x)) = f (x) + g(x), với hàm số f (x); g(x) liên tục R B R f ′ (x) = f (x) R + C với hàm số f (x) có đạo hàm liên tục R C R k f (x) = k f (x)R với mọiRhằng số k với hàm số f (x) liên tục R D ( f (x) − g(x)) = f (x) − g(x), với hàm số f (x); g(x) liên tục R R2 Câu 33 Tích phân I = (2x − 1) có giá trị bằng: A B C D Câu 34 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | z số thực Tính giá trị biểu Câu 35 Cho số phức z , cho z số thực w = + z2 |z| thức bằng? + |z|2 √ B C D A Câu 36 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√ + 2b √ √ √ A B 10 C D 15 Câu 37 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = B P = C P = 2016 D P = −2016 √ 2 Mệnh đề Câu 38 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = đúng? √ A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 √ 2 2 2 2 C |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = D |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = Câu 39 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − 3√là hai nghiệm phức phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ 97 85 A T = B T = 13 C T = D T = 13 3 √ Câu 40 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 B |z| < C ≤ |z| ≤ D |z| > A < |z| < 2 2 Câu 41 Cho số√phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| A max T = B P = 2016 C P = −2016 D P = Câu 42 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D 2 Câu 43 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể √ tích khối trụ (T ) lớn √ √ √ 400π 500π 250π 125π A B C D 9 Trang 3/5 Mã đề 001 Câu 44 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080253 đồng C 36080254 đồng B 36080255 đồng D 36080251 đồng Câu 45 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B Câu 46 Biết a, b ∈ Z cho A R C (x + 1)e2x dx = ( B D ax + b 2x )e + C Khi giá trị a + b là: C D Câu 47 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B C −2 D −4 Câu 48 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương → x = − 2t y = −2 + 3t A z = + 5t x = −1 + 2t y = + 3t B z = −4 − 5t x = + 2t y = −2 + 3t C z = − 5t x = + 2t y = −2 − 3t D z = − 5t Câu 49 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình nón đỉnh S đáy hình trịn nội tiếp tứ giác ABCD √ πa2 17 A √ πa2 15 B √ πa2 17 C √ πa2 17 D Câu 50 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (−3; 0) B (3; 5) C (−1; 1) D (1; 5) Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001