Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm giá trị cực đại yCD của hàm số y = x3 − 12x + 20 A yCD = 36 B yCD =[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = 36 B yCD = −2 C yCD = Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : D yCD = 52 y+2 z x−1 = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vuông góc với d A (P) : x + y + 2z = B (P) : x − 2y − = C (P) : x − y − 2z = D (P) : x − y + 2z = R Câu Tính nguyên hàm cos 3xdx 1 A −3 sin 3x + C B sin 3x + C C sin 3x + C D − sin 3x + C 3 Câu Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x A − B C D 6 Câu Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tam giác BCD và√có chiều cao chiều cao tứ diện √ √ tiếp √ π 3.a2 π 2.a2 2π 2.a B C π 3.a D A 3 Câu Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ A ln + B ln − C − ln 2 D − ln − Câu Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vng với cạnh huyền √ 3bằng 2a Tính thể tích3 khối nón √ π 2.a π.a 2π.a3 4π 2.a3 A B C D 3 3 Câu Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(3; 7; 4) B C(1; 5; 3) C C(−3; 1; 1) D C(5; 9; 5) Câu Tích tất nghiệm phương trình ln2 x + 2lnx − = 1 A B −2 C Câu 10 Tiệm cận ngang đồ thị hàm số y = A y = B y = − D −3 2x + đường thẳng có phương trình: 3x − 2 C y = − D y = 3 Câu 11 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (−6; 7) B (7; 6) C (7; −6) D (6; 7) Câu 12 Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x + (a + 2)x + − a đồng biến khoảng (0; 1)? A B 11 C D 12 Trang 1/5 Mã đề 001 Câu 13 Cho hàm số f (x) = cosx + x Khẳng định đúng? R R x2 A f (x) = sinx + + C B f (x) = −sinx + x2 + C R R x2 C f (x) = −sinx + + C D f (x) = sinx + x2 + C Câu 14 Có cặp số nguyên (x; y) thỏa mãnlog3 (x2 + y2 + x) + log2 (x2 + y2 ) ≤ log3 x + log2 (x2 + y2 + 24x)? A 90 B 48 C 89 D 49 Câu 15 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d > R B d = R C d = D d < R y−1 z−1 x−2 = = Gọi Câu 16 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : 2 −3 (P) mặt phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) 11 B C D A 3 + 2i + i2017 Câu 17 Số phức z = có tổng phần thực phần ảo 2−i A B -1 C D Câu 18 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực không âm C Mô-đun số phức z số thực B Mô-đun số phức z số thực dương D Mô-đun số phức z số phức Câu 19 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = B A = 2k C A = D A = 2ki Câu 20 Với số phức z, ta có |z + 1|2 B z2 + 2z + A z · z + z + z + C |z|2 + 2|z| + D z + z + Câu 21 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A B C −3 D −7 Câu 22 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 − 2i B −3 + 2i C −3 − 10i D 11 + 2i Câu 23 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực là−3 phần ảo −2i B Phần thực là3 phần ảo C Phần thực phần ảo 2i D Phần thực −3 phần ảo là−2 4(−3 + i) (3 − i)2 Câu 24 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ √ − 2i √ √ A |w| = 85 B |w| = C |w| = 48 D |w| = Câu 25 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A −21008 B −22016 C 21008 D −21008 + Câu 26 Trong không gian Oxyz, cho ba điểm A(0; 1; 2), B(2; −2; 1), C(−2; 1; 0) Khi mặt phẳng (ABC) có phương trình A x − y + z + = B x + y − z + = C x + y − z − = D 6x + y − z − = Câu 27 Trong không gian Oxyz, điểm đối xứng với điểm B(3; −1; 4) qua mặt phẳng (xOz) có tọa độ A (−3; −1; −4) B (3; 1; 4) C (−3; −1; 4) D (3; −1; −4) R1 3x − a a Câu 28 Biết dx = 3ln − , a, b nguyên dương phân số tối giản Hãy b b x + 6x + tính ab A ab = −5 B ab = C ab = D ab = 12 Trang 2/5 Mã đề 001 Câu 29 Cho hàmR số f (x) liên tục khoảng (−2; 3) Gọi F(x) nguyên hàm f (x) khoảng (−2; 3) Tính I = −1 [ f (x) + 2x], biết F(−1) = F(2) = A I = 10 B I = C I = D I = R + lnx dx(x > 0) Câu 30 Nguyên hàm x 1 D x + ln2 x + C A ln2 x + lnx + C B x + ln2 x + C C ln2 x + lnx + C 2 Câu 31 Phương trình mặt phẳng qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n = (−2; 1; −1) A −2x + y − z + = B −2x + y − z + = C 2x + y − z − = D −2x + y − z − = Câu 32 Họ nguyên hàm hàm số f (x) = cosx + sinx A F(x) = sinx + cosx + C B F(x) = −sinx + cosx + C C F(x) = sinx − cosx + C D F(x) = −sinx − cosx + C R1 R R1 R1 Câu 33 Cho f (x) = v a` g(x) = [ f (x) − 2g(x)] A 12 B −8 C D −3 z Câu 34 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| thức bằng? + |z|2 √ B C D A Câu 35 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm R B điểm S Câu 36 Cho số phức z , thỏa mãn A |z| = B |z| = 1 bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm Q D điểm P z+1 số ảo Tìm |z| ? z−1 C |z| = D |z| = Câu 37 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | z Câu 38 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức M = |z + − i| √ √ A B C D 2 Câu 39 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ A P = B P = C P = D P = 2 Câu 40 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − hai nghiệm phức √ phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ 85 97 A T = 13 B T = C T = D T = 13 3 Câu 41 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ A 10 B C 15 D Trang 3/5 Mã đề 001 = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu diễn số phức thuộc tập hợp sau đây? ! ! ! ! 1 9 B 0; C ; D ; A ; +∞ 4 4 Câu 42 Cho số phức z thỏa mãn (3 − 4i)z − Câu 43 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vuông góc với mặt phẳng (ABC), S A = 2a Gọi α số đo góc đường thẳng S B mp(S AC) Tính giá trị sin α √ √ √ 15 15 A B C D 10 3x cắt đường thẳng y = x + m Câu 44 Tìm tất giá trị tham số mđể đồ thị hàm số y = x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = B m = −2 C m = D Không tồn m Câu 45 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ = 2a Gọi α số đo góc hai đường thẳng AC DB′ Tính giá trị cos α √ √ √ 3 B C D A 2 Câu 46 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc với mặt phẳng (ABC), diện tích tam giác S BC a Tính thể tích khối chóp S ABC √ √ √ √ a3 15 a3 a3 15 a3 15 A B C D 16 d Câu 47 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ √ A a B a C a D 2a √ Câu 48 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình vơ nghiệm B Bất phương trình với x ∈ [ 1; 3] C Bất phương trình với x ∈ (4; +∞) D Bất phương trình có nghiệm thuộc khoảng (−∞; 1) Câu 49 Hàm số hàm số sau đồng biến R A y = x3 + 3x2 + 6x − 4x + C y = x+2 B y = −x3 − x2 − 5x D y = x4 + 3x2 Câu 50 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080251 đồng C 36080253 đồng B 36080255 đồng D 36080254 đồng Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001