Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình hộp chữ nhật ABCD A′B′C′D′ có AB = a, AD = a √ 3 Tính khoảng cá[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 √ Câu Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường thẳng BB′ AC ′ √ √ √ √ a a a C D A a B 2 R5 dx Câu Biết = ln T Giá trị T là: 2x − √ A T = B T = C T = 81 D T = Câu Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A B C −1 D π Câu Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m ≥ −1 B m > C m ≥ D m ≥ log Câu Cho a > a , Giá √ trị a A B √ a bằng? C D ; y = 0; x = 0; x = Câu Gọi S (t) diện tích hình phẳng giới hạn đường y = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 A − ln − B ln − C − ln D ln + 2 2 Câu Tìm giá trị cực đại yCD hàm số y = x − 12x + 20 A yCD = 36 B yCD = C yCD = 52 D yCD = −2 Câu Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tam giác BCD và√có chiều cao chiều cao tứ diện √ tiếp √ √ 2π 2.a π 3.a2 π 2.a2 B C π 3.a A D 3 Câu Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (−2; −4; −6) B (2; 4; 6) C (−1; −2; −3) D (1; 2; 3) Câu 10 Cho khối chóp S ABC có đáy tam giác vuông cân A, AB = 2, S A vuông góc với đáy S A = (tham khảo hình bên) Thể tích khối chóp cho A B C 12 D Câu 11 Phần ảo số phức z = − 3i A −3 B C D −2 2x + Câu 12 Tiệm cận ngang đồ thị hàm số y = đường thẳng có phương trình: 3x − 1 2 A y = − B y = − C y = D y = 3 3 Câu 13 Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt √phẳng (S CD) √ √ √ 3 A a B a C 2a D a 3 Trang 1/5 Mã đề 001 Câu 14 Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho C πr2 l D πrl A 2πrl B πrl2 3 Câu 15 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A B C D −1 Câu 16 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d = B d < R C d = R D d > R (1 + i)(2 − i) Câu 17 Mô-đun số phức z = √ √ + 3i C |z| = D |z| = A |z| = B |z| = Câu 18 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D 2017 (1 + i) có phần thực phần ảo đơn vị? Câu 19 Số phức z = 21008 i A B C 21008 D 2017 + 2i + i có tổng phần thực phần ảo Câu 20 Số phức z = 2−i A B C -1 D Câu 21 Cho số phức z = + 5i Tìm số phức w = iz + z A w = −3 − 3i B w = − 3i C w = −7 − 7i D w = + 7i Câu 22 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A −10 B 10 C −9 D !2016 !2018 1−i 1+i + Câu 23 Số phức z = 1−i 1+i A B + i C D −2 z Câu 24 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z √ √ B 11 C 13 D A Câu 25 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực dương C Mô-đun số phức z số thực không âm Câu 26 Biết R1 tính ab A ab = x2 B Mô-đun số phức z số phức D Mô-đun số phức z số thực 3x − a a dx = 3ln − , a, b nguyên dương phân số tối giản Hãy + 6x + b b B ab = C ab = −5 R1 R R1 R1 Câu 27 Cho f (x) = v a` g(x) = [ f (x) − 2g(x)] A 12 B −3 C D ab = 12 D −8 Câu R28 Mệnh đề R sau sai? A R k f (x) = k f (x) với số k với hàm số f (x) liên tục R B f ′ (x) = f (x) + C với hàm số f (x) có đạo hàm liên tục R Trang 2/5 Mã đề 001 R R R C R ( f (x) − g(x)) = R f (x) − R g(x), với hàm số f (x); g(x) liên tục R D ( f (x) + g(x)) = f (x) + g(x), với hàm số f (x); g(x) liên tục R Câu 29 Hàm số y = F(x) nguyên hàm hàm số y = f (x) Hãy chọn khẳng định A F(x) = f ′ (x) + C B F ′ (x) = f (x) C F(x) = f ′ (x) D F ′ (x) + C = f (x) Câu 30 Trong hệ tọa độ Oxyz, cho bốn điểm A(0; 1; 1), B(1; 0; 1), C(0; 0; 1), I(1; 1; 1) Mặt phẳng qua I, song song với mặt phẳng (ABC) có phương trình là: A z − = B x + y + z − = C x − = D y − = R1 Câu 31 Tích phân e−x dx e−1 1 C D − A e − B e e e R + lnx Câu 32 Nguyên hàm dx(x > 0) x 1 C ln2 x + lnx + C D ln2 x + lnx + C A x + ln2 x + C B x + ln2 x + C 2 R0 Câu 33 Giá trị −1 e x+1 dx A e − B e C − e D −e Câu 34 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = −2016 B P = C P = D P = 2016 Câu 35 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A |z| = B z số ảo C Phần thực z số âm D z số thực không dương Câu 36 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B 18 C D Câu 37 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = B A = + i C A = −1 D A = √ điểm A hình vẽ bên điểm Câu 38 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm Q B điểm N Câu 39 Cho số phức z , thỏa mãn bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm M D điểm P z+1 số ảo Tìm |z| ? z−1 A |z| = B |z| = C |z| = D |z| = Câu 40 Gọi z1 ; z2 hai nghiệm phương trình z2 − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A 22016 B −21008 C −22016 D 21008 Câu 41 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 2z − i Câu 42 Cho số phức z thỏa mãn |z| ≤ ĐặtA = Mệnh đề sau đúng? + iz A |A| > B |A| ≤ C |A| < D |A| ≥ Trang 3/5 Mã đề 001 Câu 43 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m > 1 B m > m < − C m < −2 D m > m < −1 Câu 44 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 10 31 A M( ; ; ) 3 11 17 B M( ; ; ) 3 21 C M( ; ; ) 3 10 16 D M( ; ; ) 3 Câu 45 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRl + πR2 B S = 2πRl + 2πR2 C S = πRh + πR2 D S = πRl + 2πR2 Câu 46 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −4 B C D −2 Câu 47 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ √ √ A 4a3 B 3a3 C 9a3 D 6a3 Câu 48 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ 3a a 15 3a 3a 30 A B C D 10 2 √ 2x − x2 + Câu 49 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Câu 50 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −2x4 + 4x2 B y = −x4 + 2x2 + C y = x3 − 3x2 D y = −x4 + 2x2 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001