Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Biết ∫ f (u)du = F(u) +C Mệnh đề nào dưới đây đúng? A ∫ f (2x − 1)dx = 1[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Biết f (u)du = F(u) + C Mệnh đề đúng? R R A f (2x − 1)dx = F(2x − 1) + C B f (2x − 1)dx = 2F(x) − + C R R C f (2x − 1)dx = 2F(2x − 1) + C D f (2x − 1)dx = F(2x − 1) + C R Câu Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối tròn xoay tạo thành quay (H) quanh trục Ox 32π 32 8π A V = B V = C V = D V = 5 Câu Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(1; 5; 3) B C(−3; 1; 1) C C(3; 7; 4) D C(5; 9; 5) R Câu Tính nguyên hàm cos 3xdx 1 D sin 3x + C A −3 sin 3x + C B sin 3x + C C − sin 3x + C 3 Câu Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 B m < C Không tồn m D m < A < m < 3 √ ′ ′ ′ ′ Câu Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = a Tính khoảng cách hai đường √ thẳng BB′ AC ′ √ √ √ a a a B C D a A 2 Câu Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 4m2 − m2 − 12 m2 − m2 − 12 A B C D 2m 2m 2m m R5 dx Câu Biết = ln T Giá trị T là: 2x − √ A T = 81 B T = C T = D T = Câu Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (−2; −4; −6) B (−1; −2; −3) C (1; 2; 3) D (2; 4; 6) Câu 10 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A −1 B C D Câu 11 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (−6; 7) B (7; −6) C (6; 7) D (7; 6) Câu 12 Cho hình chóp S ABC có đáy tam giác vng B, S A vng góc với đáy S A = AB (tham khảo hình bên) Góc hai mặt phẳng (S BC) (ABC) A 30◦ B 45◦ C 60◦ D 90◦ Trang 1/5 Mã đề 001 Câu 13 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trìnhlà: x = + 2t x = + 2t x=5+t x = + 2t y = −1 + 3t y = + 3t y = + 2t y = −1 + t A B C D z = −1 + t z = −1 + t z = + 3t z = −1 + 3t Câu 14 Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 105 B 210 C 30 D 225 x−1 y−2 z+3 = = Điểm thuộc Câu 15 Trong không gian Oxyz, cho đường thẳng d : −1 −2 d? A Q(1; 2; −3) B N(2; 1; 2) C M(2; −1; −2) D P(1; 2; 3) Câu 16 Với a số thực dương tùy ý, ln(3a) − ln(2a) A lna B ln C ln(6a2 ) Câu 17 Tìm số phức liên hợp số phức z = i(3i + 1) B z = − i C z = −3 − i A z = −3 + i D ln D z = + i Câu 18 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực là3 phần ảo B Phần thực phần ảo 2i C Phần thực −3 phần ảo là−2 D Phần thực là−3 phần ảo −2i Câu 19 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A z + z = 2bi B z · z = a2 − b2 C z − z = 2a D |z2 | = |z|2 + 2i + i2017 có tổng phần thực phần ảo 2−i B C -1 D 2(1 + 2i) Câu 21 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A B C D 13 Câu 20 Số phức z = A Câu 22 Cho hai √ số phức z1 = + i z2 = − 3i Tính mô-đun số phức z1 + z2 √ A |z1 + z2 | = B |z1 + z2 | = C |z1 + z2 | = D |z1 + z2 | = 13 Câu 23 Trong kết luận sau, kết luận sai A Mô-đun số phức z số phức C Mô-đun số phức z số thực dương B Mô-đun số phức z số thực D Mô-đun số phức z số thực không âm Câu 24 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = 2i B P = C P = D P = + i Câu 25 Cho số phức z = + 5i Tìm số phức w = iz + z A w = −7 − 7i B w = + 7i C w = − 3i D w = −3 − 3i Câu 26 Hàm số F(x) = sin(2023x) nguyên hàm hàm số A f (x) = −2023cos(2023x) C f (x) = cos(2023x) cos(2023x) B f (x) = − 2023 D f (x) = 2023cos(2023x) Câu 27 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) tọa độ trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là: A C(−1; 0; −2) B C(1; 4; 4) C C(−1; −4; 4) D C(1; 0; 2) Câu R28 Mệnh đề sau sai? A R f ′ (x) = f (x) + CR với mọiR hàm số f (x) có đạo hàm liên tục R B R ( f (x) − g(x)) = R f (x) − R g(x), với hàm số f (x); g(x) liên tục R C R ( f (x) + g(x)) R = f (x) + g(x), với hàm số f (x); g(x) liên tục R D k f (x) = k f (x) với số k với hàm số f (x) liên tục R Trang 2/5 Mã đề 001 Câu 29 Cho hàm số f (x) có đạo hàm với x ∈ R f ′ (x) = 2x + Giá trị f (2) − f (1) A B C D −2 R8 R4 R4 Câu 30 Biết f (x) = −2; f (x) = 3; g(x) = Mệnh đề sau sai? R4 R8 A [4 f (x) − 2g(x)] = −2 B f (x) = −5 R4 R8 C [ f (x) + g(x)] = 10 D f (x) = Câu 31 Tìm hàm số F(x) khơng ngun hàm hàm số f (x) = sin2x A F(x) = −cos2x B F(x) = sin2 x C F(x) = −cos2 x D F(x) = − cos2x Câu 32 Hàm số y = F(x) nguyên hàm hàm số y = f (x) Hãy chọn khẳng định A F(x) = f ′ (x) + C B F(x) = f ′ (x) C F ′ (x) = f (x) D F ′ (x) + C = f (x) Câu 33 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương trình A x − 2y + 2z + 15 = B x + 2y + 2z − 15 = C x − 2y + 2z − 15 = D x + 2y + 2z + 15 = Câu 34 Gọi z1 ; z2 hai nghiệm phương trình z2 − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A −21008 B −22016 C 22016 D 21008 √ Câu 35 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm M B điểm Q bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm N D điểm P Câu 36 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = B P = C P = 2016 D P = −2016 z Câu 37 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức M = |z + − i| √ √ A B C D 2 Câu 38 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ A P = B P = C P = D P = 2 √ Câu 39 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = 3 Câu 40 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√ + 2b √ √ √ A B 10 C D 15 Câu 41 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z √2 | √ √ A P = 26 B P = C P = 34 + D P = + Trang 3/5 Mã đề 001 √ Câu 42 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A B a2 + b2 + c2 − ab − bc − ca C a + b + c D a2 + b2 + c2 + ab + bc + ca Câu 43 Biết a, b ∈ Z cho A R (x + 1)e2x dx = ( B ax + b 2x )e + C Khi giá trị a + b là: C D Câu 44 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 12π B 10π C 6π D 8π Câu 45 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRh + πR2 B S = πRl + 2πR2 C S = πRl + πR2 D S = 2πRl + 2πR2 Câu 46 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: A 12 B C D Câu 47 Tính tích tất nghiệm phương trình (log2 (4x))2 + log2 ( A B 128 C 32 Câu 48 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: A 3π ln + B ln + √ Câu 49 Cho bất phương trình 6π 2(x−1)+1 C x2 )=8 D 64 cos x π F(− ) = π Khi giá trị sin x + cos x 6π ln + 5 D 6π − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình vơ nghiệm B Bất phương trình có nghiệm thuộc khoảng (−∞; 1) C Bất phương trình với x ∈ [ 1; 3] D Bất phương trình với x ∈ (4; +∞) Câu 50 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 21 10 31 11 17 10 16 A M( ; ; ) B M( ; ; ) C M( ; ; ) D M( ; ; ) 3 3 3 3 3 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001