1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (961)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 125,5 KB

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian Oxyz, cho mặt cầu (S ) x2 + y2 + z2 − 2x − 2y + 4z − 1[.]

Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = −7 C m = D m = Câu Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề đúng? A Hàm số nghịch biến khoảng (−3; 1) B Hàm số nghịch biến khoảng (1; +∞) C Hàm số đồng biến khoảng (−3; 1) D Hàm số nghịch biến khoảng (−∞; −3) Câu Đạo hàm hàm số y = log √2 3x − là: 2 A y′ = B y′ = C y′ = D y′ = (3x − 1) ln (3x − 1) ln 3x − ln 3x − ln Câu Biết R5 A T = dx = ln T Giá trị T là: 2x − √ B T = C T = 81 D T = √ d = 1200 Gọi K, Câu Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC I (A1 BK) √ trung điểm cạnh√CC1 , BB1 Tính khoảng cách từ điểm I đến mặt phẳng √ √ a 15 a a B C a 15 A D 3 Câu Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(1; 5; 3) B C(−3; 1; 1) C C(3; 7; 4) D C(5; 9; 5) Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 B C D A −z Câu Cho x, y, z ba số thực khác thỏa mãn x = 5y = 10 Giá trị biểu thức A = xy + yz + zxbằng? A B C D Câu Trong khơng gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 60◦ B 30◦ C 45◦ D 90◦ Câu 10 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa độ A (1; −2; 3) B (−1; 2; 3) C (−1; −2; −3) D (1; 2; −3) Câu 11 Một hộp chứa 15 cầu gồm màu đỏ đánh số từ đến màu xanh đánh số từ đến Lấy ngẫu nhiên hai từ hộp đó, xác suất để lấy hai khác màu đồng thời tổng hai số ghi chúng số chẵn 18 B C D A 35 35 35 Câu 12 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 A B C D Trang 1/5 Mã đề 001 Câu 13 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (2; 4; 6) B (−1; −2; −3) C (−2; −4; −6) D (1; 2; 3) Câu 14 Tập nghiệm bất phương trình x+1 < A (−∞; 1) B [1; +∞) C (1; +∞) D (−∞; 1] Câu 15 Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC tam giác vuông cân B, AB = a Biết a, thể tích khối lăng trụ cho khoảng cách từ A đến mặt phẳng (A′ BC) √ √ √ √ 3 3 A 2a B a C a D a Câu 16 Tích tất nghiệm phương trình ln2 x + 2lnx − = 1 A −3 B C −2 D Câu 17 Với số phức z, ta có |z + 1|2 A z2 + 2z + B z · z + z + z + C |z|2 + 2|z| + Câu 18 Cho số phức z = + 5i Tìm số phức w = iz + z A w = + 7i B w = −3 − 3i C w = − 3i D z + z + D w = −7 − 7i Câu 19 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D − 2i (1 − i)(2 + i) Câu 20 Phần thực số phức z = + 2−i + 3i 11 29 11 29 B − C − D A 13 13 13 13 Câu 21 Cho hai √ số phức z1 = + i z2 = − 3i Tính mơ-đun số phức z1 + z2 √ A |z1 + z2 | = B |z1 + z2 | = C |z1 + z2 | = D |z1 + z2 | = 13 (1 + i)(2 − i) Câu 22 Mô-đun số phức z = + 3i √ A |z| = B |z| = C |z| = D |z| = √ √ Câu 23 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A −1 ≤ m ≤ B m ≥ m ≤ −1 C ≤ m ≤ D m ≥ m ≤ Câu 24 Cho số phức z thỏa mãn z(1 + 3i) = 17 + i Khi√đó mơ-đun số phức√w = 6z − 25i A B 13 C D 29 4(−3 + i) (3 − i)2 Câu 25 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ √ √ − 2i √ A |w| = B |w| = C |w| = 85 D |w| = 48 R2 Câu 26 Tích phân I = (2x − 1) có giá trị bằng: A B C D Câu 27 Hàm số f (x) thoả mãn f ′ (x) = x x là: A x2 + x+1 x+1 + C B x2 x + C C (x − 1) x + C D (x + 1) x + C Câu 28 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) qua điểm M(1; 2; −2) có phương trình A (x + 2)2 + y2 + z2 = B (x − 2)2 + y2 + z2 = C (x + 2)2 + y2 + z2 = D (x − 2)2 + y2 + z2 = Trang 2/5 Mã đề 001 Câu 29 Tìm nguyên hàm hàm số f (x) = √ 2x + R R √ √ A f (x)dx = 2x + + C B f (x) = 2x + + C R R 1√ 2x + + C D f (x)dx = √ C f (x)dx = + C 2x + R2 Câu 30 Tính tích phân I = xe x dx A I = e2 B I = 3e2 − 2e C I = e D I = −e2 R3 Câu 31 Cho a x−2 dx = Giá trị tham số a thuộc khoảng sau đây? 1 A (−1; 0) B ( ; 1) C (0; ) D (1; 2) 2 Câu R32 Mệnh đề nàoRsau sai? R A R ( f (x) + g(x)) = f (x) + g(x), với hàm số f (x); g(x) liên tục R R B R k f (x) = k f (x)R với mọiRhằng số k với hàm số f (x) liên tục R C R ( f (x) − g(x)) = f (x) − g(x), với hàm số f (x); g(x) liên tục R D f ′ (x) = f (x) + C với hàm số f (x) có đạo hàm liên tục R Câu 33 F(x) nguyên hàm hàm số y = xe x Hàm số sau F(x)? 1 2 A F(x) = − e x + C B F(x) = (e x + 5) C F(x) = − (2 − e x ) D F(x) = e x + 2 2 √ Câu 34 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 B |z| > C |z| < D ≤ |z| ≤ A < |z| < 2 2 √ Câu 35 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = z Câu 36 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức √ √ M = |z + − i| B C D A 2 √ Câu 37 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a + b + c B a2 + b2 + c2 + ab + bc + ca C a2 + b2 + c2 − ab − bc − ca D Câu 38 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm P B điểm R bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm Q D điểm S Câu 39 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ A B √ C D 2 z Câu 40 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| thức bằng? + |z|2 Trang 3/5 Mã đề 001 √ C D A √  √  √ 42 √ Câu 41 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z A < |z| < B < |z| < C < |z| < D < |z| < 2 2 B Câu 42 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 Câu 43 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −4 B C −2 D Câu 44 Biết π R2 sin 2xdx = ea Khi giá trị a là: A B − ln C D ln Câu 45 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A 2x + y − 4z + = B 2x + y − 4z + = C −2x − y + 4z − = D 2x + y − 4z + = Câu 46 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), S A = 2a Gọi α số đo góc đường thẳng S B mp(S AC) Tính giá trị sin α √ √ √ 15 15 A B C D 10 d Câu 47 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ √ A 2a B a C a D a Câu 48 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m < −2 B m > C m > m < − D m > m < −1 Câu 49 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ √ √ A 9a3 B 3a3 C 4a3 D 6a3 r 3x + Câu 50 Tìm tập xác định D hàm số y = log2 x−1 A D = (1; +∞) B D = (−∞; −1] ∪ (1; +∞) C D = (−∞; 0) D D = (−1; 4) Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 11/04/2023, 10:38