Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề nào dưới đây đúng? A Hàm số[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề đúng? A Hàm số nghịch biến khoảng (−∞; −3) B Hàm số nghịch biến khoảng (−3; 1) C Hàm số nghịch biến khoảng (1; +∞) D Hàm số đồng biến khoảng (−3; 1) Câu Cho a > a , Giá trị alog A B √ a bằng? √ C Câu Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo log √b a3 m2 − 12 4m2 − m2 − B C A 2m m 2m Câu Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) điểm I đoạn thẳng AB A I(0; 1; 2) B I(1; 1; 2) C I(0; −1; 2) D m giá trị P = loga2 b − m2 − 12 2m B(1; 0; 4) Tìm tọa độ trung D D I(0; 1; −2) Câu Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối tròn xoay tạo thành quay (H) quanh trục Ox 32π 8π 32 A V = B V = C V = D V = 5 Câu Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = −3 B f (−1) = C f (−1) = −5 D f (−1) = −1 Câu Đạo hàm hàm số y = log √2 3x − là: 6 D y′ = A y′ = B y′ = C y′ = (3x − 1) ln (3x − 1) ln 3x − ln 3x − ln Câu Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(1; 2; 0) B A(0; 2; 3) C A(1; 0; 3) D A(0; 0; 3) Câu Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (−2; −4; −6) B (2; 4; 6) C (1; 2; 3) D (−1; −2; −3) Câu 10 Cho khối chóp S ABC có đáy tam giác vuông cân A, AB = 2, S A vng góc với đáy S A = (tham khảo hình bên) Thể tích khối chóp cho A 12 B C D 800π Câu 11 Cho khối nón có đỉnh S , chiều cao thể tích Gọi A B hai điểm thuộc đường tròn đáy cho AB = 12, khoảng cách từ tâm đường tròn đáy đến mặt phẳng (S AB) √ √ 24 A B C D 24 2x + Câu 12 Tiệm cận ngang đồ thị hàm số y = đường thẳng có phương trình: 3x − 1 2 A y = − B y = C y = − D y = 3 3 Trang 1/5 Mã đề 001 ax + b có đồ thị đường cong hình bên cx + d Tọa độ giao điểm đồ thị hàm số cho trục hoành A (0; −2) B (2; 0) C (0; 2) D (−2; 0) R Câu 14 Cho dx = F(x) + C Khẳng định đúng? x 1 B F ′ (x) = C F ′ (x) = lnx D F ′ (x) = − A F ′ (x) = x x x 2 Câu 15 Trên tập hợp số phức, xét phương trình z − 2(m + 1)z + m = ( m tham số thực) Có bao nhiêu giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn z1 + z2 = 2? A B C D Câu 13 Cho hàm số y = Câu 16 Đồ thị hàm số có dạng đường cong hình bên? x−3 A y = x2 − 4x + B y = x4 − 3x2 + C y = D y = x3 − 3x − x−1 Câu 17 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực dương B Mô-đun số phức z số thực C Mô-đun số phức z số phức D Mô-đun số phức z số thực không âm z2 Câu 18 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ A 13 B 11 C D Câu 19 Đẳng thức đẳng thức sau? A (1 + i)2018 = −21009 i B (1 + i)2018 = 21009 i C (1 + i)2018 = −21009 D (1 + i)2018 = 21009 √ Câu 20 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A m ≥ m ≤ B ≤ m ≤ C m ≥ m ≤ −1 D −1 ≤ m ≤ Câu 21 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A B −3 C −7 D Câu 22 Với số phức z, ta có |z + 1|2 A z2 + 2z + B |z|2 + 2|z| + C z + z + D z · z + z + z + Câu 23 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A −22016 B −21008 + C −21008 D 21008 Câu 24 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A −10 B 10 C D −9 Câu 25 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A M(2; −3) B N(2; 3) C P(−2; 3) D Q(−2; −3) Câu 26 Trong không gian Oxyz, điểm đối xứng với điểm B(3; −1; 4) qua mặt phẳng (xOz) có tọa độ A (3; −1; −4) B (−3; −1; −4) C (−3; −1; 4) D (3; 1; 4) R + lnx dx(x > 0) Câu 27 Nguyên hàm x 1 A x + ln2 x + C B x + ln2 x + C C ln2 x + lnx + C D ln2 x + lnx + C 2 −−→ Câu 28 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) B(2; 2; 1) Vectơ AB có tọa độ A (3; 1; 1) B (1; 1; 3) C (−1; −1; −3) D (3; 3; −1) Câu 29 Phương trình mặt phẳng qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n = (−2; 1; −1) A −2x + y − z + = B −2x + y − z + = C −2x + y − z − = D 2x + y − z − = Trang 2/5 Mã đề 001 Câu 30 Cho hàm số f (x) có đạo hàm đoạn [−1; 2] f (−1) = 2023, f (2) = −1 Tích phân bằng: A B −2024 C 2024 D 2025 Câu 31 Tìm nguyên hàm F(x) hàm số f (x) = e x+1 , biết F(0) = e A F(x) = e x B F(x) = e2x C F(x) = e x+1 R2 −1 f ′ (x) D F(x) = e x + Câu 32 Cho f (x) hàm số liên tục [a; b] (với a < b ) F(x) nguyên hàm f (x) [a; b] Mệnh đề đúng? A Diện tích S hình phẳng giới hạn hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) trục hồnh tính theo cơng thức S = F(b) − F(a) Ra B b f (x) = F(b) − F(a) Rb C a k · f (x) = k[F(b) − F(a)] b Rb D a f (2x + 3) = F(2x + 3) a Câu 33 Họ nguyên hàm hàm số f (x) = cosx + sinx A F(x) = −sinx + cosx + C B F(x) = −sinx − cosx + C C F(x) = sinx + cosx + C D F(x) = sinx − cosx + C √ Giá trị lớn biểu thức Câu 34 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = 3 Câu 35 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ B C D A 13 Câu 36 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C 18 D 4 Câu 37 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu !diễn số phức thuộc tập hợp!nào sau đây? ! ! 1 A ; B ; +∞ C 0; D ; 4 4 Câu 38 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | Câu 39 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = (|z| − 2)2 B P = (|z| − 4)2 C P = |z|2 − D P = |z|2 − √ Câu 40 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 A < |z| < B |z| < C |z| > D ≤ |z| ≤ 2 2 √ Câu 41 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a2 + b2 + c2 − ab − bc − ca B C a + b + c D a2 + b2 + c2 + ab + bc + ca Câu 42 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = + i B A = C A = −1 D A = Trang 3/5 Mã đề 001 Câu 43 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox B m > m < − C m > A m < −2 D m > m < −1 Câu 44 Chọn mệnh đề mệnh đề sau: A R3 R2 |x − 2x|dx = (x − 2x)dx − B R3 |x2 − 2x|dx = − C R3 R3 R3 (x2 − 2x)dx R2 (x2 − 2x)dx + R3 (x2 − 2x)dx R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx D 2 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx 1 Câu 45 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 8π B 10π C 12π D 6π Câu 46 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox A 32π B 31π C 6π D 33π Câu 47 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (−1; 1) B (3; 5) C (−3; 0) D (1; 5) Câu 48 Trong khơng gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = √ √ A R = 14 B R = 15 C R = D R = Câu 49 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể tích khối trụ (T ) lớn √ √ √ √ 125π 400π 500π 250π A B C D 9 Câu 50 Biết π R2 sin 2xdx = ea Khi giá trị a là: A B C ln D − ln Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001