Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Biết 5∫ 1 dx 2x − 1 = ln T Giá trị của T là A T = 9 B T = 81 C T = 3 D T[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Biết R5 A T = dx = ln T Giá trị T là: 2x − B T = 81 C T = D T = √ √ Câu Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Có tiệm cận ngang khơng có tiệm cận đứng B Khơng có tiệm cận C Khơng có tiệm cận ngang có tiệm cận đứng D Có tiệm cận ngang tiệm cận đứng √ Câu Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường √ thẳng BB′ AC ′ √ √ √ a a a D A B C a 2 Câu Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A π B −1 C D Câu Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 C [22; +∞) D ( ; +∞) A ( ; 2] [22; +∞) B [ ; 2] [22; +∞) 4 Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 B C D A Câu Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 B ln + C ln − D − ln A − ln − 2 2 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(1; 0; 3) B A(0; 0; 3) C A(1; 2; 0) D A(0; 2; 3) Câu Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (1; 0) B (−1; 2) C (0; 1) D (1; 2) Câu 10 Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox 16π 16π 16 16 A B C D 15 9 15 Câu 11 Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (1; 2) B (1; +∞) C (−∞; 1) D (2; +∞) Trang 1/5 Mã đề 001 Câu 12 Cho số phức z = + 9i, phần thực số phức z2 A −77 B C 85 D 36 Câu 13 Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cực trị? A 15 B C D 17 Câu 14 Phần ảo số phức z = − 3i A −2 B C −3 R dx = F(x) + C Khẳng định đúng? Câu 15 Cho x A F ′ (x) = B F ′ (x) = lnx C F ′ (x) = x x x+1 Câu 16 Tập nghiệm bất phương trình < A [1; +∞) B (−∞; 1) C (1; +∞) D D F ′ (x) = − x2 D (−∞; 1] Câu 17 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mơ-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Câu 18 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A −21008 B 21008 C −21008 + D −22016 z2 Câu 19 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ A 13 B 11 C D Câu 20 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực phần ảo 2i B Phần thực là−3 phần ảo −2i C Phần thực −3 phần ảo là−2 D Phần thực là3 phần ảo Câu 21 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = + i B P = 2i C P = D P = 2017 (1 + i) có phần thực phần ảo đơn vị? Câu 22 Số phức z = 21008 i A B C D 21008 √ Câu 23 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A ≤ m ≤ B −1 ≤ m ≤ C m ≥ m ≤ −1 D m ≥ m ≤ 2(1 + 2i) = + 8i Mô-đun số phức w = z + i + Câu 24 Cho số phức z thỏa mãn (2 + i)z + 1+i A B 13 C D Câu 25 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D R Câu 26 Tìm nguyên hàm I = xcosxdx x A I = x2 sin + C B I = xsinx + cosx + C x C I = x2 cos + C D I = xsinx − cosx + C R2 Câu 27 Tính tích phân I = xe x dx A I = e B I = 3e2 − 2e C I = e2 D I = −e2 Trang 2/5 Mã đề 001 Câu 28 Trong hệ tọa độ Oxyz, cho bốn điểm A(0; 1; 1), B(1; 0; 1), C(0; 0; 1), I(1; 1; 1) Mặt phẳng qua I, song song với mặt phẳng (ABC) có phương trình là: A y − = B x − = C x + y + z − = D z − = Câu 29 Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (α) : 2x − 3y − z − = Điểm không thuộc mặt phẳng (α) A P(3; 1; 3) B Q(1; 2; −5) C N(4; 2; 1) D M(−2; 1; −8) Câu 30 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) tọa độ trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là: A C(−1; 0; −2) B C(−1; −4; 4) C C(1; 4; 4) D C(1; 0; 2) Câu 31 Trong không gian Oxyz, cho ba điểm A(1; 3; 2), B(1; 2; 1), C(4; 1; 3) Mặt phẳng qua trọng tâm G tam giác ABC vng góc với đường thẳng AC có phương trình A 3x − 2y + z − 12 = B 3x + 2y + z − = C 3x − 2y + z − = D 3x − 2y + z + = R + lnx Câu 32 Nguyên hàm dx(x > 0) x 1 A ln2 x + lnx + C B x + ln2 x + C C x + ln2 x + C D ln2 x + lnx + C 2 R a a 3x − dx = 3ln − , a, b nguyên dương phân số tối giản Hãy Câu 33 Biết b b x + 6x + tính ab A ab = B ab = C ab = −5 D ab = 12 Câu 34 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = B A = + i C A = −1 D A = Câu 35 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu!diễn số phức thuộc tập hợp!nào sau đây? ! ! 9 A 0; B ; +∞ C ; D ; 4 4 Câu 36 Cho số phức z thỏa mãn |z| ≤ ĐặtA = A |A| > B |A| ≤ 2z − i Mệnh đề sau đúng? + iz C |A| < D |A| ≥ Câu 37 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ B P = C P = D P = A P = 2 √ Câu 38 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = Câu 39 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = 2016 B P = −2016 C P = D P = z Câu 40 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| thức bằng? + |z|2 √ A B C D Trang 3/5 Mã đề 001 Câu 41 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A z số thực không dương B Phần thực z số âm C |z| = D z số ảo Câu 42 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm R bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z B điểm Q C điểm P D điểm S Câu 43 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ 3a a 15 3a 30 3a A B C D 10 Câu 44 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRl + πR2 B S = πRl + 2πR2 C S = 2πRl + 2πR2 D S = πRh + πR2 Câu 45 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), S A = 2a Gọi α số đo góc đường thẳng S B mp(S AC) Tính giá trị sin α √ √ √ 15 15 B C D A 10 −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 46 Trong không gian với hệ trục tọa độ Oxyz, cho → −u + 3→ −v véc tơ 2→ −u + 3→ −v = (3; 14; 16) −u + 3→ −v = (2; 14; 14) A 2→ B 2→ −u + 3→ −v = (1; 14; 15) −u + 3→ −v = (1; 13; 16) C 2→ D 2→ Câu 47 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A 2x + y − 4z + = B 2x + y − 4z + = C −2x − y + 4z − = D 2x + y − 4z + = Câu 48 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = √ √ D R = 14 A R = B R = C R = 15 Câu 49 Cho tứ diện DABC, tam giácABC vng B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính √ √ √ √ 5a 5a 5a 5a A B C D 3 Câu 50 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 11 17 10 16 21 10 31 A M( ; ; ) B M( ; ; ) C M( ; ; ) D M( ; ; ) 3 3 3 3 3 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001