Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho tứ diện đều ABCD có cạnh bằng a Tính diện tích xung quanh của hình t[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tam giác BCD có chiều cao chiều cao tứ diện √ tiếp √ √ 2 √ π 3.a2 π 2.a 2π 2.a B π 3.a D A C 3 Câu Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = 36 B yCD = 52 C yCD = −2 D yCD = Câu Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V A B C D Câu Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A B C D Câu Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vuông với cạnh huyền 2a Tính thể tích khối nón √ √ 2π.a3 π.a3 4π 2.a3 π 2.a3 B C D A 3 3 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(1; 0; 3) B A(0; 0; 3) C A(0; 2; 3) D A(1; 2; 0) Câu Tập nghiệm bất phương trình log (x − 1) ≥ là: A (1; 2) B (1; 2] C [2; +∞) D (−∞; 2] Câu Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = −3 B f (−1) = C f (−1) = −5 D f (−1) = −1 Câu Cho hàm số f (x) liên tục R Gọi R 2F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 A B C D Câu 10 Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (2; +∞) B (1; +∞) C (−∞; 1) D (1; 2) Câu 11 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: A y′ = xπ−1 B y′ = πxπ C y′ = xπ−1 D y′ = πxπ−1 π Câu 12 Có cặp số nguyên (x; y) thỏa mãnlog3 (x2 + y2 + x) + log2 (x2 + y2 ) ≤ log3 x + log2 (x2 + y2 + 24x)? A 89 B 48 C 90 D 49 Câu 13 Tích tất nghiệm phương trình ln2 x + 2lnx − = 1 A B −3 C D −2 Trang 1/5 Mã đề 001 Câu 14 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A −1 B C D Câu 15 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trìnhlà: x = + 2t x=5+t x = + 2t x = + 2t y = −1 + 3t y = + 2t y = + 3t y = −1 + t A B C D z = −1 + t z = + 3t z = −1 + t z = −1 + 3t Câu 16 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (7; 6) B (7; −6) C (6; 7) D (−6; 7) Câu 17 Đẳng thức đẳng thức sau? A (1 + i)2018 = −21009 B (1 + i)2018 = 21009 i C (1 + i)2018 = 21009 D (1 + i)2018 = −21009 i Câu 18 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D Câu 19.√Cho số phức z1 = +√2i, z2 = − i Giá trị √ biểu thức |z1 + z1 z2 | √ A 10 B 130 C 10 D 30 Câu 20 Tính mơ-đun số phức √ z thỏa mãn z(2 − i) + 13i =√1 √ 34 34 A |z| = 34 B |z| = C |z| = D |z| = 34 3 2017 (1 + i) Câu 21 Số phức z = có phần thực phần ảo đơn vị? 21008 i A B C 21008 D Câu 22 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực dương B Mô-đun số phức z số phức C Mô-đun số phức z số thực không âm D Mô-đun số phức z số thực 2(1 + 2i) = + 8i Mô-đun số phức w = z + i + Câu 23 Cho số phức z thỏa mãn (2 + i)z + 1+i A B 13 C D − 2i (1 − i)(2 + i) Câu 24 Phần thực số phức z = + 2−i + 3i 29 11 29 11 A B C − D − 13 13 13 13 Câu 25 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Câu 26 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) qua điểm M(1; 2; −2) có phương trình A (x + 2)2 + y2 + z2 = B (x + 2)2 + y2 + z2 = C (x − 2)2 + y2 + z2 = D (x − 2)2 + y2 + z2 = Câu R27 Mệnh đề nàoRsau sai? R A R ( f (x) − g(x)) = f (x) − g(x), với hàm số f (x); g(x) liên tục R R B R k f (x) = k f (x)R với mọiRhằng số k với hàm số f (x) liên tục R C R ( f (x) + g(x)) = f (x) + g(x), với hàm số f (x); g(x) liên tục R D f ′ (x) = f (x) + C với hàm số f (x) có đạo hàm liên tục R Trang 2/5 Mã đề 001 Câu 28 Trong hệ tọa độ Oxyz, cho bốn điểm A(0; 1; 1), B(1; 0; 1), C(0; 0; 1), I(1; 1; 1) Mặt phẳng qua I, song song với mặt phẳng (ABC) có phương trình là: A z − = B x + y + z − = C x − = D y − = Câu 29 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương trình A x + 2y + 2z + 15 = B x − 2y + 2z − 15 = C x + 2y + 2z − 15 = D x − 2y + 2z + 15 = R + lnx Câu 30 Nguyên hàm dx(x > 0) x 1 A ln2 x + lnx + C B x + ln2 x + C C ln2 x + lnx + C D x + ln2 x + C 2 R1 Câu 31 Tích phân e−x dx 1 e−1 B C − D e − A e e e Câu 32 Cho hàmR số f (x) liên tục khoảng (−2; 3) Gọi F(x) nguyên hàm f (x) khoảng (−2; 3) Tính I = −1 [ f (x) + 2x], biết F(−1) = F(2) = A I = B I = C I = D I = 10 R3 Câu 33 Cho a x−2 dx = Giá trị tham số a thuộc khoảng sau đây? 1 A (0; ) B ( ; 1) C (−1; 0) D (1; 2) 2 √ 2 Câu 34 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 1.√ B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3 2z − i Câu 35 Cho số phức z thỏa mãn |z| ≤ ĐặtA = Mệnh đề sau đúng? + iz A |A| ≤ B |A| < C |A| > D |A| ≥ Câu 36 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ C D A B √ 2 Câu 37 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A B C D 13 z Câu 38 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức M = |z + − i| √ √ A B C D 2 Câu 39 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | Câu 40 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C 18 D Trang 3/5 Mã đề 001 Câu 41 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i B |w|min = C |w|min = D |w|min = A |w|min = 2 √ Câu 42 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm P bốn điểm M, N, P, Q Khi điểm biểu diễn iz B điểm Q C điểm M D điểm N Câu 43 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = d Câu 44 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ √ A 2a B a C a D a Câu 45 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRl + 2πR2 B S = πRh + πR2 C S = 2πRl + 2πR2 D S = πRl + πR2 Câu 46 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính tổng M + m A B C √ Câu 47 Tính đạo hàm hàm số y = log4 x2 − x x C y′ = A y′ = √ B y′ = (x − 1)log4 e (x − 1) ln x2 − ln Câu 48 Biết π R2 D D y′ = 2(x2 x − 1) ln sin 2xdx = ea Khi giá trị a là: A − ln B C ln D Câu 49 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A 2x + y − 4z + = B 2x + y − 4z + = C −2x − y + 4z − = D 2x + y − 4z + = Câu 50 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc với mặt phẳng (ABC), diện tích tam giác S BC a Tính thể tích khối chóp S ABC √ √ √ √ a3 15 a3 15 a3 15 a3 A B C D 16 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001