TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Trong các khẳng định sau, khẳng định nào sai? A ∫ 0dx = C,[.]
TỐN PDF LATEX TRẮC NGHIỆM ƠN THI MƠN TỐN THPT (Đề thi có 10 trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Z Trong khẳng định sau, khẳng định sai? Z A 0dx = C, C số B dx = x + C, C số Z Z xα+1 C xα dx = + C, C số D dx = ln |x| + C, C số α+1 x Câu [1] Phương trình log2 4x − log 2x = có nghiệm? A Vơ nghiệm B nghiệm C nghiệm D nghiệm Câu Cho hai đường thẳng d d0 cắt Có phép đối xứng qua mặt phẳng biến d thành d0 ? A Có vơ số B Có C Có hai D Khơng có √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 A B C D − 4 Câu [1] Đạo hàm làm số y = log x 1 A y0 = B x ln 10 10 ln x C y0 = x D y0 = ln 10 x Câu Mệnh đề sau sai? A F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) B Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) !0 Z C f (x)dx = f (x) Z D Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C x−3 x−2 x−1 x + + + y = |x + 2| − x − m (m tham x−2 x−1 x x+1 số thực) có đồ thị (C1 ) (C2 ) Tập hợp tất giá trị m để (C1 ) cắt (C2 ) điểm phân biệt A (−∞; 2) B [2; +∞) C (2; +∞) D (−∞; 2] Câu [4-1213d] Cho hai hàm số y = Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B C D x−1 y z+1 = = −1 mặt phẳng (P) : 2x − y + 2z − = Viết phương trình mặt phẳng (Q) chứa ∆ tạo với (P) góc nhỏ A 10x − 7y + 13z + = B 2x + y − z = C −x + 6y + 4z + = D 2x − y + 2z − = Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình Câu 10 Cho √ số phức z thỏa mãn |z + √ 3| = |z − 2i| = |z − − 2i| Tính |z| A |z| = 17 B |z| = 10 C |z| = 10 D |z| = 17 Câu 11 Khối lập phương thuộc loại A {3; 3} B {3; 4} C {5; 3} D {4; 3} Trang 1/10 Mã đề Câu 12 [1] Tính lim x→3 A −∞ x−3 bằng? x+3 B +∞ Câu 13 Khối đa diện loại {5; 3} có tên gọi gì? A Khối bát diện B Khối tứ diện C D C Khối 12 mặt D Khối 20 mặt Câu 14 Z Các khẳng định sau Z sai? A Z C Z !0 f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C B f (x)dx = f (x) Z Z Z k f (x)dx = k f (x)dx, k số D f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C Câu 15 √ √ Thể tích khối lăng√trụ tam giác có cạnh là: 3 3 B C D A 12 Câu 16 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a B 2a C D a A a Câu 17 Trong khẳng định sau, khẳng định sai? A Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số B F(x) = x2 nguyên hàm hàm số f (x) = 2x C Cả ba đáp án √ D F(x) = x nguyên hàm hàm số f (x) = x Câu 18 Cho tứ diện ABCD tích 12 G trọng tâm tam giác BCD Tính thể tích V khối chóp A.GBC A V = B V = C V = D V = Câu 19 Khối đa diện loại {3; 5} có số đỉnh A 12 B 20 C 30 √ Câu 20 Xác định phần ảo số √ √ phức z = ( + 3i) C −6 A −7 B 2n + Câu 21 Tìm giới hạn lim n+1 A B C D D D Câu 22 [3] Biết giá trị lớn hàm số y = số tự nhiên Tính S = m2 + 2n3 A S = 22 B S = 135 ln x m đoạn [1; e3 ] M = n , n, m x e C S = 24 D S = 32 Câu 23 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (1; 3; 2) B (2; 4; 3) C (2; 4; 6) D (2; 4; 4) Câu 24 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Trang 2/10 Mã đề Các mệnh đề A (I) (II) B Cả ba mệnh đề n−1 Câu 25 Tính lim n +2 A B C (I) (III) D (II) (III) C D Câu 26 Cho z1 , z2 hai nghiệm phương trình z2 + 3z + = Tính P = z1 z2 (z1 + z2 ) A P = 21 B P = −21 C P = 10 D P = −10 Câu 27 [3-12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B < m ≤ C < m ≤ D ≤ m ≤ 2n − Câu 28 Tính lim 3n + n4 A B C D Câu 29 Cho hàm số y = −x3 + 3x2 − Mệnh đề đúng? A Hàm số nghịch biến khoảng (0; 2) B Hàm số đồng biến khoảng (0; 2) C Hàm số đồng biến khoảng (0; +∞) D Hàm số nghịch biến khoảng (−∞; 2) Câu 30 [2] Cho hàm số y = ln(2x + 1) Tìm m để y0 (e) = 2m + 1 − 2e − 2e + 2e + 2e B m = C m = D m = A m = 4e + − 2e 4e + − 2e Câu 31 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có F (x) = f (x), ngồi F (a+ ) = f (a) F (b− ) = f (b) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có f (x) = F(x) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 32 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) a 2a 5a 8a B C D A 9 9 Câu 33 [2-c] Giá trị lớn hàm số y = ln(x2 + x + 2) đoạn [1; 3] A ln 10 B ln 14 C ln D ln 12 Câu 34 Tổng diện tích mặt khối lập phương 54cm2 Thể tích khối lập phương là: A 27cm3 B 64cm3 C 46cm3 D 72cm3 Câu 35 Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) đường thẳng z x+1 y−5 = = Tìm véctơ phương ~u đường thẳng ∆ qua M, vuông góc với đường thẳng d: 2 −1 d đồng thời cách A khoảng bé A ~u = (2; 2; −1) B ~u = (2; 1; 6) C ~u = (1; 0; 2) D ~u = (3; 4; −4) Câu 36 [1] Giá trị biểu thức log √3 10 1 A B − C −3 D 3 x Câu 37 [2-1223d] Tổng nghiệm phương trình log3 (7 − ) = − x A B C D Câu 38 Khối lăng trụ tam giác có đỉnh, cạnh, mặt? A đỉnh, cạnh, mặt B đỉnh, cạnh, mặt C đỉnh, cạnh, mặt D đỉnh, cạnh, mặt Trang 3/10 Mã đề Câu 39 Khối đa diện loại {4; 3} có số mặt A 10 B C D 12 q Câu 40 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 1] B m ∈ [0; 2] C m ∈ [−1; 0] D m ∈ [0; 4] Câu 41 Nếu hình chóp có chiều cao cạnh đáy tăng lên n lần thể tích tăng lên? A 2n3 lần B n3 lần C n3 lần D 2n2 lần Câu 42 Tập xác định hàm số f (x) = −x3 + 3x2 − A [1; 2] B (1; 2) C [−1; 2) 2x + x+1 B D (−∞; +∞) Câu 43 Tính giới hạn lim x→+∞ A C D −1 0 0 Câu 44.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D Câu 45 [3-c] Cho < x < 64 Tìm giá trị lớn f (x) = log42 x + 12 log22 x log2 x A 82 B 81 C 64 D 96 Câu 46 Xác định phần ảo số phức z = (2 + 3i)(2 − 3i) A 13 B Không tồn C D Câu 47 [3-1122h] Cho hình lăng trụ ABC.A0 B0C có đáy tam giác cạnh a Hình chiếu vng góc A0 lên √ mặt phẳng (ABC) trung với tâm tam giác ABC Biết khoảng cách đường thẳng AA a Khi thể tích khối lăng trụ BC √ √ √ √ a3 a3 a3 a3 B C D A 24 36 12 √ Câu 48 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 62 B 64 C 63 D Vô số Câu 49 Hàm số y = 2x3 + 3x2 + nghịch biến khoảng (hoặc khoảng) đây? A (0; 1) B (−∞; 0) (1; +∞) C (−1; 0) D (−∞; −1) (0; +∞) x Câu 50 √ Tính diện tích hình phẳng giới hạn đường y = xe , y = 0, x = 3 A B C D 2 Câu 51 Khối đa diện loại {3; 3} có số cạnh A B C D √ Câu 52 [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 62 B 63 C 64 D Vô số log(mx) Câu 53 [3-1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < ∨ m > B m < ∨ m = C m < D m ≤ Trang 4/10 Mã đề log2 240 log2 15 − + log2 log3,75 log60 B C −8 Câu 54 [1-c] Giá trị biểu thức A D Câu 55 Trong không gian cho hai điểm A, B cố định độ dài AB = Biết tập hợp điểm M cho MA = 3MB mặt cầu Khi bán kính mặt cầu bằng? C D A B 2 Câu 56 Khối đa diện loại {3; 4} có số đỉnh A 10 B C D Câu 57 Ba kích thước hình hộp chữ nhật làm thành cấp số nhân có cơng bội Thể tích hình hộp cho 1728 Khi đó, kích thước hình hộp √ √ A 2, 4, B 8, 16, 32 C 6, 12, 24 D 3, 3, 38 Câu 58 Phần thực phần ảo số phức z = −i + A Phần thực −1, phần ảo −4 B Phần thực −1, phần ảo C Phần thực 4, phần ảo −1 D Phần thực 4, phần ảo log(mx) = có nghiệm thực log(x + 1) C m ≤ D m < ∨ m = Câu 59 [1226d] Tìm tham số thực m để phương trình A m < ∨ m > B m < !2x−1 !2−x 3 Câu 60 Tập số x thỏa mãn ≤ 5 A [3; +∞) B [1; +∞) C (−∞; 1] D (+∞; −∞) Câu 61 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (I) B Chỉ có (II) C Cả hai D Cả hai sai Câu 62 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ a 2a a B C D a A 2 Câu 63 Tìm tất khoảng đồng biến hàm số y = x3 − 2x2 + 3x − A (−∞; 3) B (−∞; 1) (3; +∞) C (1; 3) D (1; +∞) Câu 64 Khối đa diện loại {3; 4} có số cạnh A B C 12 D 10 Câu 65 Khối đa diện loại {3; 3} có số đỉnh A B C D Câu 66 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m > B m < C m ≥ D m ≤ 4 4 p ln x ln2 x + mà F(1) = Giá trị F (e) là: Câu 67 Gọi F(x) nguyên hàm hàm y = x 1 8 A B C D 3 Trang 5/10 Mã đề Câu 68 [1] Cho a > 0, a , Giá trị biểu thức log a1 a2 1 A − B −2 C D 2 Câu 69 [2-c] Gọi M, m giá trị lớn giá trị nhỏ hàm số y = x + ln x đoạn [1; e] Giá trị T = M + m 2 B T = e + C T = e + D T = e + A T = + e e Câu 70 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B ≤ m ≤ C ≤ m ≤ D < m ≤ Câu 71 Cho hình chóp S ABCD có đáy ABCD hình thoi với AC = 2BD = 2a tam giác S AD vuông cân S√, (S AD) ⊥ (ABCD) Thể√tích khối chóp S ABCD là√ √ a3 a3 a3 a3 A B C D 12 12 Câu 72 Tính mơ đun số phức z√biết (1 + 2i)z2 = + 4i √ √ C |z| = D |z| = A |z| = B |z| = Câu 73 Khối đa diện loại {4; 3} có số cạnh A 10 B 30 x −9 Câu 74 Tính lim x→3 x − A B Câu 75 [1] Tập xác định hàm số y = A D = (−2; 1) B D = [2; 1] x2 +x−2 C 12 D 20 C +∞ D −3 C D = R \ {1; 2} D D = R C D Câu 76 Giá trị lim (3x2 − 2x + 1) A +∞ x→1 B [ = 60◦ , S O Câu 77 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ Khoảng cách từ A đến (S BC) √ √ với mặt đáy S O = a √ a 57 a 57 2a 57 B C a 57 D A 19 17 19 Câu 78 [1] Tập xác định hàm số y = x−1 A D = R \ {0} B D = R \ {1} C D = (0; +∞) D D = R d = 300 Câu 79 Cho khối lăng trụ đứng ABC.A0 B0C có đáy ABC tam giác vuông A BC = 2a, ABC Độ dài cạnh bên CC = 3a Thể tích V khối lăng trụ cho √ √ √ a3 3a3 3 A V = 6a B V = 3a C V = D V = 2 Trong khẳng định sau đây, khẳng định đúng? Câu 80 [3-12217d] Cho hàm số y = ln x + A xy0 = ey + B xy0 = ey − C xy0 = −ey − D xy0 = −ey + Câu 81 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 13 B log2 2020 C 2020 D 13 Câu 82 [3-1213h] Hình hộp chữ nhật khơng có nắp tích 3200 cm3 , tỷ số chiều cao chiều rộng Khi tổng mặt hình nhỏ nhất, tính diện tích mặt đáy hình hộp A 1200 cm2 B 160 cm2 C 160 cm2 D 120 cm2 Câu 83 [2-c] Cho a = log27 5, b = log8 7, c = log2 Khi log12 35 3b + 3ac 3b + 2ac 3b + 2ac A B C c+1 c+2 c+3 D 3b + 3ac c+2 Trang 6/10 Mã đề mx − Câu 84 Tìm m để hàm số y = đạt giá trị lớn [−2; 6] x+m A 45 B 34 C 67 D 26 Câu 85 [2] Tổng nghiệm phương trình 6.4 x − 13.6 x + 6.9 x = A B C D Câu 86 [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% tháng Biết khơng rút tiền khỏi ngân hàng sau tháng, số tiền lãi nhập vào vốn ban đầu để tính lãi cho tháng Hỏi sau tháng, người lĩnh số tiền khơng 110 triệu đồng (cả vốn lẫn lãi), biết thời gian gửi tiền người khơng rút tiền lãi suất khơng thay đổi? A 18 tháng B 15 tháng C 16 tháng D 17 tháng Câu 87 Mỗi đỉnh hình đa diện đỉnh chung A Bốn mặt B Ba mặt C Hai mặt D Năm mặt Câu 88 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC 1 ab ab A √ B √ C √ D 2 2 2 a + b2 a +b a +b a +b Câu 89 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ √ a a A a B C D 2a Câu 90 Hàm số y = −x + 3x − đồng biến khoảng đây? A (−∞; −1) B (−∞; 1) C (−1; 1) D (1; +∞) Câu 91 Hàm số y = −x3 + 3x2 − đồng biến khoảng đây? A (−∞; 1) B (2; +∞) C (0; 2) D R Câu 92 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B Z Câu 93 Cho A C D 1 xe2x dx = ae2 + b, a, b số hữu tỷ Tính a + b B C D Câu 94 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Trang 7/10 Mã đề Câu 95 [2] Một người gửi 9, triệu đồng với lãi suất 8, 4% năm lãi suất hàng năm nhập vào vốn Hỏi theo cách sau năm người thu tổng số tiền 20 triệu đồng (Biết lãi suất không thay đổi) A năm B 10 năm C năm D năm Câu 96 Cho hình chóp S ABCD có đáy ABCD hình chữ nhật AB = 2a, BC = 4a (S AB) ⊥ (ABCD) Hai mặt bên (S BC) (S AD) cùng√hợp với đáy góc 30◦√ Thể tích khối chóp S ABCD √ √ 3 3 8a a 8a 4a B C D A 9 Câu 97 Gọi M, m giá trị lớn nhất, giá trị nhỏ hàm số y = (x2 − 3)e x đoạn [0; 2] Giá trị biểu thức P = (m2 − 4M)2019 A B 22016 C D e2016 Câu 98 Tìm giá trị nhỏ hàm số y = (x2 − 2x + 3)2 − A −5 B −7 C −3 D Không tồn x2 Câu 99 Gọi M, m giá trị lớn giá trị nhỏ hàm số y = x đoạn [−1; 1] Khi e 1 A M = e, m = B M = e, m = C M = , m = D M = e, m = e e Câu 100 Cho lăng trụ ABC.A0 B0C có cạnh đáy a Cạnh bên 2a Thể tích khối lăng trụ ABC.A0 B0C √ √ a3 a3 a3 3 A a B C D Câu 101 Hình hình sau khơng khối đa diện? A Hình chóp B Hình tam giác C Hình lập phương D Hình lăng trụ Câu 102 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu sai B Chỉ có (I) Câu 103 Khối đa diện loại {3; 3} có số mặt A B C Cả hai câu D Chỉ có (II) C D Câu 104 [2D1-3] Tìm giá trị tham số m để hàm số y = − x − mx2 − (m + 6)x + đồng biến √ đoạn có độ dài 24 A m = −3 B −3 ≤ m ≤ C m = −3, m = D m = Câu 105 [4-1121h] Cho hình chóp S ABCD đáy ABCD hình vng, biết AB = a, ∠S AD = 90◦ tam giác S AB tam giác Gọi Dt đường thẳng qua D song song với S C Gọi I giao điểm Dt mặt phẳng (S AB) Thiết diện √mặt phẳng (AIC) có diện √tích √ hình chóp S ABCD với 2 2 11a a a a A B C D 32 16 − xy Câu 106 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P√= x + y √ √ √ 18 11 − 29 11 + 19 11 − 19 11 − A Pmin = B Pmin = C Pmin = D Pmin = 21 9 Trang 8/10 Mã đề 1 Trong khẳng định sau đây, khẳng định đúng? x+1 y B xy = e + C xy0 = −ey − D xy0 = ey − Câu 107 [3-12217d] Cho hàm số y = ln A xy0 = −ey + Câu 108 [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% tháng Biết không rút tiền khỏi ngân hàng sau tháng, số tiền lãi nhập vào vốn ban đầu để tính lãi cho tháng Hỏi sau tháng, người lĩnh số tiền (cả vốn lẫn lãi) gần với số tiền đây, khoảng thời gian người khơng rút tiền lãi suất không thay đổi? A 102.016.000 B 102.423.000 C 102.424.000 D 102.016.000 ! − 12x = có nghiệm thực? Câu 109 [2] Phương trình log x log2 12x − A Vơ nghiệm B C D Câu 110 Tính lim A n+3 B C Câu 111 Dãy số sau có giới hạn 0? n2 − 3n − 2n B u = A un = n 5n + n2 n2 C un = D n2 + n + (n + 1)2 D un = n2 − 5n − 3n2 3a , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a a 2a A B C D 3 Câu 112 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = Câu 113 hạn 0? !n Dãy số sau có !giới n A B e !n !n 5 C D − 3 √ √ Câu 114 Phần thực √ phần ảo số phức √ z = − − 3i l √ √ A Phần thực √2 − 1, phần ảo −√ B Phần thực 1√− 2, phần ảo −√ C Phần thực 2, phần ảo − D Phần thực − 1, phần ảo Câu 115 [2] Tổng nghiệm phương trình x +2x = 82−x A −6 B −5 C D Câu 116 [2-c] Giá trị nhỏ hàm số y = (x2 − 2)e2x đoạn [−1; 2] A −e2 B −2e2 C 2e2 D 2e4 Câu 117 Tìm m để hàm số y = mx3 + 3x2 + 12x + đạt cực đại x = A m = −2 B m = −3 C m = D m = −1 Câu 118 Khi tăng độ dài tất cạnh khối hộp chữ nhật lên gấp ba thể tích khối hộp tương ứng sẽ: A Tăng gấp lần B Tăng gấp 27 lần C Tăng gấp lần D Tăng gấp 18 lần Câu 119 [4-1245d] Trong tất √ |z − − i| √ số phức z thỏa mãn hệ thức |z − + 3i| = Tìm A B 10 C D Câu 120 Tính lim x→1 A x3 − x−1 B −∞ C D +∞ Câu 121 [2D1-3] Tìm giá trị tham số m để hàm số y = x3 − mx2 + 3x + đồng biến R A m ≤ B −2 ≤ m ≤ C m ≥ D −3 ≤ m ≤ Trang 9/10 Mã đề Câu 122 Khối đa diện loại {3; 3} có tên gọi gì? A Khối bát diện B Khối tứ diện C Khối 12 mặt D Khối lập phương Câu 123 [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m > B m < C m ≥ D m ≤ 4 4 Câu 124 Khi tăng ba kích thước khối hộp chữ nhật lên n lần thể thích tăng lên A n2 lần B n3 lần C n lần D 3n3 lần Câu 125 Dãy số sau có giới hạn khác 0? n+1 A B n n C sin n n D √ n Câu 126 [4-1242d] Trong tất số phức z thỏa mãn |z − + 2i| = |z + − 4i| Tìm giá trị nhỏ môđun √ z √ √ √ 13 C 13 D A B 26 13 Câu 127 [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% năm Ông muốn hoàn nợ ngân hàng theo cách: Sau tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp cách tháng, số tiền hoàn nợ lần trả hết tiền nợ sau tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng lần hoàn nợ bao nhiêu? Biết lãi suất ngân hàng không đổi thời gian ông A hoàn nợ 120.(1, 12)3 100.(1, 01)3 triệu B m = triệu A m = (1, 12)3 − (1, 01)3 100.1, 03 C m = triệu D m = triệu (1, 01) − Câu 128 [2] Tổng nghiệm phương trình x−1 x = 8.4 x−2 A − log3 B − log2 C − log2 D − log2 Câu 129 [1-c] Giá trị biểu thức log2 36 − log2 144 A B −4 C −2 D Câu 130 [1]! Tập xác định hàm số y! = log3 (2x + 1) ! 1 ; +∞ B − ; +∞ C −∞; − A 2 ! D −∞; - - - - - - - - - - HẾT- - - - - - - - - - Trang 10/10 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 C D C D A A B A D 11 15 A 17 D 10 B 14 D 16 D 20 C 26 27 B 28 29 B 30 31 A B C 36 B 41 D C 38 C 40 C 44 D 47 B D 48 A 49 C 50 51 C 52 A 53 B 54 55 B 56 C 59 D 46 B 57 B 42 C 43 A C C B 58 D 60 61 B 62 A 63 B 64 65 B 66 67 B 34 A 37 A 45 D 32 A 35 39 B 24 A D 25 33 C 22 B 23 C 18 19 A 21 B 12 C 13 D 68 C B C D B 70 C 69 71 D 72 C 73 77 A 79 D 81 A D 83 85 A 87 B 76 D 78 D 80 B 82 B 84 B 86 C 88 C C 89 C 90 91 C 92 A 93 A 95 C 97 A 99 101 D B 103 105 D 94 D 96 D 98 D 100 D 102 C 104 C D 106 B 107 D 109 B 74 A D 75 D 108 C C 110 A 112 111 A 113 B 114 A 115 B 116 A 117 A 118 119 A 120 D B C 121 D 122 B 123 D 124 B 125 126 A B 127 C 128 B 129 C 130 B