TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tứ diện đều có bao nhiêu mặt phẳng đối xứng? A 6 mặt B 4 m[.]
TỐN PDF LATEX TRẮC NGHIỆM ƠN THI MƠN TỐN THPT (Đề thi có 10 trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Tứ diện có mặt phẳng đối xứng? A mặt B mặt C 10 mặt D mặt Câu Cho hàm số y = x3 − 3x2 + Tích giá trị cực đại giá trị cực tiểu A B −6 C −3 D Câu [2-1223d] Tổng nghiệm phương trình log3 (7 − x ) = − x A B C D Câu mệnh đề sau, mệnh đềZ sai? Z Z Cho hàm số fZ(x), g(x) liên tục R Trong Z A k f (x)dx = f f (x)dx, k ∈ R, k , B ( f (x) + g(x))dx = f (x)dx + g(x)dx Z Z Z Z Z Z C f (x)g(x)dx = f (x)dx g(x)dx D ( f (x) − g(x))dx = f (x)dx − g(x)dx Câu Khối đa diện loại {3; 4} có số cạnh A 10 B C 12 D Câu Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy góc 60◦ Thể tích√khối chóp S ABCD √ √ √ a3 a3 2a3 3 B C D A a 3 Câu Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim+ f (x) = f (a) lim− f (x) = f (b) B lim− f (x) = f (a) lim+ f (x) = f (b) x→a x→b x→a x→b C lim− f (x) = f (a) lim− f (x) = f (b) x→a x→b x→a x→b D lim+ f (x) = f (a) lim+ f (x) = f (b) Câu [1] Phương trình log2 4x − log 2x = có nghiệm? A nghiệm B nghiệm C nghiệm D Vô nghiệm 2−n Câu Giá trị giới hạn lim n+1 A −1 B C D 1 Câu 10 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B < m ≤ C ≤ m ≤ D ≤ m ≤ Câu 11 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A Vô nghiệm B C D Câu 12 [3-1123d] Ba bạn A, B, C, bạn viết ngẫu nhiên lên bảng số tự nhiên thuộc đoạn [1; 17] Xác suất để ba số viết có tổng chia hết cho 1728 1637 23 1079 A B C D 4913 4913 68 4913 Câu 13 Tìm m để hàm số y = mx3 + 3x2 + 12x + đạt cực đại x = A m = −1 B m = −3 C m = −2 D m = Câu 14 Tìm giá trị nhỏ hàm số y = (x2 − 2x + 3)2 − A Không tồn B −7 C −5 D −3 Câu 15 Hàm số y = x3 − 3x2 + đồng biến trên: A (−∞; 0) (2; +∞) B (0; +∞) D (−∞; 2) C (0; 2) Trang 1/10 Mã đề Câu 16 [2-c] Giá trị lớn hàm số y = ln(x2 + x + 2) đoạn [1; 3] A ln 10 B ln 12 C ln D ln 14 Câu 17 [2] Cho hàm số f (x) = x x Giá trị f (0) A f (0) = B f (0) = 10 C f (0) = D f (0) = ln 10 ln 10 Câu 18 Khối đa diện thuộc loại {3; 3} có đỉnh, cạnh, mặt? A đỉnh, cạnh, mặt B đỉnh, cạnh, mặt C đỉnh, cạnh, mặt D đỉnh, cạnh, mặt Câu 19 Hình hộp chữ nhật có ba kích thước khác có mặt phẳng đối xứng? A mặt B mặt C mặt D mặt Câu 20 Cho hàm số f (x) liên tục đoạn [0; 1] thỏa mãn f (x) = 6x f (x )− √ A −1 B C Z 3x + Tính f (x)dx D Câu 21 Khối đa diện thuộc loại {3; 5} có đỉnh, cạnh, mặt? A 12 đỉnh, 30 cạnh, 20 mặt B 20 đỉnh, 30 cạnh, 12 mặt C 12 đỉnh, 30 cạnh, 12 mặt D 20 đỉnh, 30 cạnh, 20 mặt Câu 22 Bát diện thuộc loại A {5; 3} B {3; 3} C {4; 3} D {3; 4} [ = 60◦ , S O Câu 23 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ O đến (S √ BC) √ 2a 57 a 57 a 57 A B C D a 57 19 19 17 Câu 24 Mệnh đề sau sai? A Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Z B Nếu F(x) nguyên hàm f (x) (a; b) C số !0 Z C f (x)dx = f (x) f (x)dx = F(x) + C D F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) 3a , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a 2a a A B C D 3 x − 3x + Câu 26 Hàm số y = đạt cực đại x−2 A x = B x = C x = D x = 1 + + ··· + n Câu 27 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + A lim un = B lim un = 1 C lim un = D Dãy số un giới hạn n → +∞ Câu 28 Cho hình chóp S ABCD có đáy ABCD hình vuông biết S A ⊥ (ABCD), S C = a S C hợp với đáy một√góc 60◦ Thể tích khối √ chóp S ABCD √ √ 3 a a a3 a3 A B C D 48 16 24 48 Câu 25 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = Trang 2/10 Mã đề Câu 29 [2] Cho hàm số y = ln(2x + 1) Tìm m để y0 (e) = 2m + 1 + 2e + 2e − 2e B m = C m = A m = 4e + − 2e 4e + D m = − 2e − 2e Câu 30 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ √ = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ a a C A B 2a D a Câu 31 Cho tứ diện ABCD tích 12 G trọng tâm tam giác BCD Tính thể tích V khối chóp A.GBC A V = B V = C V = D V = Câu 32 [1] Cho a > 0, a , Giá trị biểu thức log 1a a2 1 A B C −2 D − 2 d = 90◦ , ABC d = 30◦ ; S BC tam giác cạnh a (S AB) ⊥ (ABC) Câu 33 Cho hình chóp S ABC có BAC Thể tích√khối chóp S ABC √ √ √ a3 a3 a3 B 2a D C A 24 12 24 Câu 34 Khi chiều cao hình chóp tăng lên n lần cạnh đáy giảm n lần thể tích A Tăng lên (n − 1) lần B Khơng thay đổi C Tăng lên n lần D Giảm n lần Câu 35 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Câu 36 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai sai B Chỉ có (II) C Cả hai D Chỉ có (I) Câu 37 Trong khơng gian, cho tam giác ABC có đỉnh B, C thuộc trục Ox Gọi E(6; 4; 0), F(1; 2; 0) hình chiếu B, C lên cạnh AC, AB Tọa độ hình chiếu ! ! A lên BC ! A ; 0; B (2; 0; 0) C ; 0; D ; 0; 3 Câu 38 Một chất điểm chuyển động trục với vận tốc v(t) = 3t2 − 6t(m/s) Tính quãng đường chất điểm từ thời điểm t = 0(s) đến thời điểm t = 4(s) A 24 m B 12 m C 16 m D m Câu 39 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 2a, tam giác S AB đều, H trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là√ √ a3 a3 4a3 2a3 A B C D 3 Câu 40 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m > B m ≤ C m ≥ D m < 4 4 Trang 3/10 Mã đề Câu 41 [2] Tổng nghiệm phương trình x −4x+5 = A B C D Câu 42 [3-12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B Vô nghiệm C D x−1 y z+1 = = −1 mặt phẳng (P) : 2x − y + 2z − = Viết phương trình mặt phẳng (Q) chứa ∆ tạo với (P) góc nhỏ A 2x + y − z = B 2x − y + 2z − = C −x + 6y + 4z + = D 10x − 7y + 13z + = Câu 43 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình Câu 44 [2] Số lượng loài vi khuẩn sau t xấp xỉ đẳng thức Qt = Q0 e0,195t , Q0 số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu 5.000 sau giờ, số lượng vi khuẩn đạt 100.000 con? A 24 B 3, 55 C 20 D 15, 36 Câu 45 Mặt phẳng (AB0C ) chia khối lăng trụ ABC.A0 B0C thành khối đa diện nào? A Một khối chóp tam giác, khối chóp tứ giác B Hai khối chóp tam giác C Hai khối chóp tứ giác D Một khối chóp tam giác, khối chóp ngữ giác Câu 46 Giá trị lim (3x2 − 2x + 1) A +∞ x→1 B C D Câu 47 [2] Biết M(0; 2), N(2; −2) điểm cực trị đồ thị hàm số y = ax3 + bx2 + cx + d Tính giá trị hàm số x = −2 A y(−2) = B y(−2) = 22 C y(−2) = −18 D y(−2) = Câu 48 Khối đa diện loại {3; 5} có số đỉnh A 30 B 12 x − 12x + 35 Câu 49 Tính lim x→5 25 − 5x A +∞ B − C 20 D C −∞ D √ Câu 50 Thể tích khối lập phương có cạnh a √ √ √ 2a3 A V = 2a3 B 2a3 C D V = a3 Câu 51 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (III) B (II) (III) C Cả ba mệnh đề log 2x Câu 52 [1229d] Đạo hàm hàm số y = x2 − ln 2x − ln 2x − log 2x A y0 = B y0 = C y0 = 2x ln 10 x ln 10 x3 D (I) (II) D y0 = 2x3 ln 10 Trang 4/10 Mã đề Câu 53 [3-1212h] Cho hình lập phương ABCD.A0 B0C D0 , gọi E điểm đối xứng với A0 qua A, gọi G la trọng tâm tam giác EA0C Tính tỉ số thể tích k khối tứ diện GA0 B0C với khối lập phương ABCD.A0 B0C D0 1 1 A k = B k = C k = D k = 18 15 Câu 54 [2-c] Giá trị lớn hàm số f (x) = e x −3x+3 đoạn [0; 2] A e2 B e3 C e5 D e x2 +x−2 Câu 55 [1] Tập xác định hàm số y = A D = R B D = [2; 1] C D = R \ {1; 2} D D = (−2; 1) Trong khẳng định sau đây, khẳng định đúng? Câu 56 [3-12217d] Cho hàm số y = ln x + A xy0 = −ey + B xy0 = ey − C xy0 = ey + D xy0 = −ey − √ Câu 57 [2] Thiết diện qua trục hình nón trịn xoay tam giác có diện tích a2 Thể tích khối nón √ √ cho √ √ πa3 πa3 πa3 πa3 A V = B V = C V = D V = 6 Câu 58 [3-12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C D Vô nghiệm Câu 59 [2] Tổng nghiệm phương trình log4 (3.2 x − 1) = x − A B C D Câu 60 Phần thực phần ảo số phức z = −3 + 4i A Phần thực −3, phần ảo −4 B Phần thực 3, phần ảo C Phần thực 3, phần ảo −4 D Phần thực −3, phần ảo Câu 61 [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% năm Biết khơng rút tiền khỏi ngân hàng sau năm, số tiền lãi nhập vào vốn ban đầu Sau năm rút lãi người thu số tiền lãi A 50, triệu đồng B 3, triệu đồng C 20, 128 triệu đồng D 70, 128 triệu đồng ! ! ! 2016 4x Tính tổng T = f +f + ··· + f Câu 62 [3] Cho hàm số f (x) = x +2 2017 2017 2017 2016 B T = 1008 C T = 2016 D T = 2017 A T = 2017 2n + Câu 63 Tìm giới hạn lim n+1 A B C D x+1 Câu 64 Tính lim x→+∞ 4x + 1 A B C D Câu 65 [1-c] Giá trị biểu thức log0,1 102,4 A 7, B 0, C −7, D 72 Câu 66 Tính lim 2n2 − 3n6 + n4 C D Câu 67 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab 1 A B C D √ √ √ a + b2 a2 + b2 a2 + b2 a2 + b2 A B Trang 5/10 Mã đề 1 Câu 68 [2D1-3] Tìm giá trị tham số m để hàm số y = − x3 − mx2 − (m + 6)x + đồng biến √ đoạn có độ dài 24 A m = B −3 ≤ m ≤ C m = −3 D m = −3, m = Câu 69 Hàm số y = −x3 + 3x2 − đồng biến khoảng đây? A (−∞; 1) B (0; 2) C R D (2; +∞) Câu 70 Điểm cực đại đồ thị hàm số y = 2x3 − 3x2 − A (1; −3) B (0; −2) C (−1; −7) D (2; 2) Trong khẳng định sau đây, khẳng định đúng? x+1 y y A xy = e − B xy = e + C xy0 = −ey − D xy0 = −ey + tan x + m Câu 72 [2D1-3] Tìm giá trị thực tham số m để hàm số y = nghịch biến khoảng m tan x + π 0; A (−∞; −1) ∪ (1; +∞) B (−∞; 0] ∪ (1; +∞) C (1; +∞) D [0; +∞) Câu 71 [3-12217d] Cho hàm số y = ln Câu 73 Giá trị cực đại hàm số y = x3 − 3x + A B −1 C D Câu 74 Khối đa diện thuộc loại {4; 3} có đỉnh, cạnh, mặt? A đỉnh, 12 cạnh, mặt B đỉnh, 12 cạnh, mặt C đỉnh, 12 cạnh, mặt D đỉnh, 12 cạnh, mặt Câu 75 [1] Phương trình log3 (1 − x) = có nghiệm A x = −2 B x = −8 C x = D x = −5 Câu 76 [2D1-3] Tìm giá trị tham số m để hàm số y = x3 − mx2 + 3x + đồng biến R A m ≤ B −2 ≤ m ≤ C −3 ≤ m ≤ D m ≥ Câu 77 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D Câu 78 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) − g(x)]dx = A Z B [ f (x) + g(x)]dx = g(x)dx, với f (x), g(x) liên tục R f (x)dx − Z f (x)dx + Z g(x)dx, với f (x), g(x) liên tục R Z f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z D k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R C Câu 79 Gọi M, m giá trị lớn nhất, giá trị nhỏ hàm số y = (x2 − 3)e x đoạn [0; 2] Giá trị biểu thức P = (m2 − 4M)2019 A B C e2016 D 22016 Câu 80 Biểu thức sau √ khơng có nghĩa −3 −1 A B −1 C (−1)−1 Câu 81 [2] Cho hàm số f (x) = x ln2 x Giá trị f (e) A 2e + B 2e C e √ D (− 2)0 D Trang 6/10 Mã đề Câu 82 [3] Biết giá trị lớn hàm số y = số tự nhiên Tính S = m2 + 2n3 A S = 22 B S = 24 ln2 x m đoạn [1; e3 ] M = n , n, m x e C S = 135 D S = 32 −2x2 Câu 83 [2-c] Giá trị lớn hàm số y = xe đoạn [1; 2] 1 B C √ A e 2e e Câu 84 Hàm số y = x + có giá trị cực đại x A B −2 C ! x+1 Câu 85 [3] Cho hàm số f (x) = ln 2017 − ln Tính tổng S = f (1) + x 4035 2017 C A 2017 B 2018 2018 !x 1−x Câu 86 [2] Tổng nghiệm phương trình = + A − log3 B − log2 C − log2 D e2 D −1 f (2) + · · · + f (2017) D 2016 2017 D log2 Câu 87 Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim+ f (x) = lim− f (x) = a B f (x) có giới hạn hữu hạn x → a x→a x→a C lim+ f (x) = lim− f (x) = +∞ D lim f (x) = f (a) x→a x→a x→a Câu 88 [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% tháng Biết không rút tiền khỏi ngân hàng sau tháng, số tiền lãi nhập vào vốn ban đầu để tính lãi cho tháng Hỏi sau tháng, người lĩnh số tiền (cả vốn lẫn lãi) gần với số tiền đây, khoảng thời gian người khơng rút tiền lãi suất không thay đổi? A 102.016.000 B 102.424.000 C 102.423.000 D 102.016.000 Câu 89 Cho hàm số y = −x3 + 3x2 − Mệnh đề đúng? A Hàm số đồng biến khoảng (0; 2) B Hàm số đồng biến khoảng (0; +∞) C Hàm số nghịch biến khoảng (−∞; 2) D Hàm số nghịch biến khoảng (0; 2) Câu 90 Cho số phức z thỏa mãn |z + √ √ 3| = |z − 2i| = |z − − 2i| Tính |z| C |z| = 17 D |z| = 17 A |z| = 10 B |z| = 10 Câu 91 Tập số x thỏa mãn log0,4 (x − 4) + ≥ A (−∞; 6, 5) B (4; 6, 5] C (4; +∞) D [6, 5; +∞) Câu 92 Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B D C Câu 93 Mỗi đỉnh hình đa diện đỉnh chung A Năm cạnh B Bốn cạnh C Ba cạnh D Hai cạnh Câu 94 [2] Tổng nghiệm phương trình x − 12.3 x + 27 = A 10 B 27 C 12 D Câu 95 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ a a 2a B C a D A 2 q Câu 96 [3-12216d] Tìm tất giá trị thực tham số m để phương trình log23 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 4] B m ∈ [0; 2] C m ∈ [0; 1] D m ∈ [−1; 0] Trang 7/10 Mã đề 2 Câu 97 [3-c] Giá trị nhỏ giá√trị lớn hàm√số f (x) = 2sin x + 2cos x lần √ lượt A B 2 C D 2 Câu 98 Tính lim A 7n2 − 2n3 + 3n3 + 2n2 + B C D - Câu 99 Cho hình chóp S ABCD √ có đáy ABCD hình vng cạnh a Hai mặt phẳng (S AB) (S AD) vng √ góc với đáy, S C = a3 Thể tích khối chóp S ABCD √ a a a3 3 A B C a D 3 Câu 100 [2] Tổng nghiệm phương trình 6.4 x − 13.6 x + 6.9 x = A B C D x−2 x−1 x x+1 Câu 101 [4-1212d] Cho hai hàm số y = + + + y = |x + 1| − x − m (m tham x−1 x x+1 x+2 số thực) có đồ thị (C1 ) (C2 ) Tập hợp tất giá trị m để (C1 ) cắt (C2 ) điểm phân biệt A (−3; +∞) B [−3; +∞) C (−∞; −3] D (−∞; −3) Câu 102 Dãy số sau có giới hạn 0? n2 + n + n2 − 3n B u = A un = n n2 (n + 1)2 C un = n2 − 5n − 3n2 D un = − 2n 5n + n2 Câu 103 [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% tháng Biết không rút tiền khỏi ngân hàng sau tháng, số tiền lãi nhập vào vốn ban đầu để tính lãi cho tháng Hỏi sau tháng, người lĩnh số tiền khơng 110 triệu đồng (cả vốn lẫn lãi), biết thời gian gửi tiền người khơng rút tiền lãi suất không thay đổi? A 15 tháng B 17 tháng C 16 tháng D 18 tháng Câu 104 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (III) sai B Câu (I) sai C Khơng có câu D Câu (II) sai sai Câu 105 [1231h] Trong khơng gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung hai x+1 y−4 z−4 x−2 y−3 z+4 = = d0 : = = đường thẳng d : −5 −2 −1 x−2 y+2 z−3 x y−2 z−3 A = = B = = 2 2 −1 x−2 y−2 z−3 x y z−1 C = = D = = 1 un Câu 106 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A B −∞ C D +∞ log2 240 log2 15 Câu 107 [1-c] Giá trị biểu thức − + log2 log3,75 log60 A B −8 C D Trang 8/10 Mã đề Câu 108 Phần thực √ phần ảo số√phức z = A Phần thực −√1, phần ảo √ C Phần thực − 2, phần ảo − Câu 109 Khối đa diện loại {3; 4} có số mặt A B 10 √ √ − − 3i lần lượt√l √ B Phần thực √2, phần ảo − √ D Phần thực − 1, phần ảo − C 12 D Câu 110 Tính thể tích khối lập √ phương biết tổng diện tích tất mặt 18 A B 3 C D 27 √ Câu 111 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 38 3a 3a 58 a 38 A B C D 29 29 29 29 cos n + sin n Câu 112 Tính lim n2 + A B C −∞ D +∞ Câu 113 [3-12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D Câu 114 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 2a 5a a 8a A B C D 9 9 x Câu 115 [2] √ Tìm m để giá trị lớn hàm số y = 2x + (m + 1)2 [0; 1] 8√ B m = ±1 C m = ±3 D m = ± A m = ± ! 3n + 2 Câu 116 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D Câu 117 Thể tích khối lăng √ trụ tam giác có cạnh√bằng là: √ 3 3 A B C D 4 12 Câu 118 Khối đa diện loại {4; 3} có số cạnh A 30 B 10 C 20 D 12 √ Câu 119 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị ngun dương m để phương trình cho có nghiệm phân biệt? A Vô số B 63 C 62 D 64 Câu 120 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có F (x) = f (x), ngồi F (a+ ) = f (a) F (b− ) = f (b) B Với x ∈ (a; b), ta có f (x) = F(x) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 121 [1] Tính lim A +∞ x→3 x−3 bằng? x+3 B C D −∞ Trang 9/10 Mã đề Câu 122 [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m > B m ≤ C m ≥ D m < 4 4 Câu 123 [2-c] Cho a = log27 5, b = log8 7, c = log2 Khi log12 35 3b + 2ac 3b + 3ac 3b + 2ac 3b + 3ac B C D A c+2 c+2 c+1 c+3 Câu 124 [2] Đạo hàm hàm số y = x ln x A y0 = ln x − B y0 = + ln x C y0 = − ln x D y0 = x + ln x [ = 60◦ , S O Câu 125 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a Khoảng cách từ A đến (S √ √ BC) √ 2a 57 a 57 a 57 A B a 57 D C 19 19 17 Câu 126 [3-1211h] Cho khối chóp S ABC có cạnh bên a mặt bên hợp với đáy góc 45◦ Tính thể tích khối chóp S√ ABC theo a √ √ a3 a3 15 a3 15 a3 A B C D 25 25 Câu 127 [4-1243d] Trong tất số phức z thỏa mãn hệ thức |z − + 3i| = |z − − 5i| Tìm giá trị nhỏ |z + + i| √ √ √ √ 12 17 D B 68 C A 34 17 0 0 Câu 128 [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab 1 ab A B C D √ √ √ a + b2 a2 + b2 a2 + b2 a2 + b2 − 2n bằng? Câu 129 [1] Tính lim 3n + 1 2 A B − C D 3 Câu 130 Trong khẳng định sau, khẳng định sai? A Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số B F(x) = − cos x nguyên hàm hàm số f (x) = sin x C Z F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x u0 (x) D dx = log |u(x)| + C u(x) - - - - - - - - - - HẾT- - - - - - - - - - Trang 10/10 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A C C C C B A B A 10 B B 11 C 12 13 C 14 A D 16 15 A D 17 18 B C 19 A 20 21 A 22 D 24 D D 23 B 25 C 26 27 C 28 A 29 A 30 C C 31 D 32 33 D 34 35 D 36 37 C 38 39 C 40 41 B 43 D 45 A 47 C D B C B 42 D 44 D 46 B 48 B 49 D 50 B 51 D 52 B 54 56 55 A C B 57 A 59 58 A 60 D D 61 C 62 B 63 C 64 B 65 C 66 68 C D 67 B 69 B 70 C 72 74 71 A B 75 B 76 D 79 80 A 82 84 D D 83 D B D 87 C 88 B 89 A 90 B 91 C 92 B 81 85 B 86 B 77 A C 78 C 73 B C 93 94 D 95 A 96 D 97 98 D 99 100 D 101 C 102 D 103 C 104 106 A 110 107 D 112 A D 116 D 120 A 111 C 113 C 117 C 119 C 121 C 122 B 123 A 124 B 125 A 126 B 115 A C 118 D 109 A B 114 B 105 C 108 D C 127 128 D 130 D 129 C B