TOÁN PDF LATEX (Đề thi có 11 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Khối đa diện loại {3; 4} có tên gọi là gì? A Khối lập phươ[.]
TỐN PDF LATEX TRẮC NGHIỆM ƠN THI MƠN TỐN THPT (Đề thi có 11 trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Khối đa diện loại {3; 4} có tên gọi gì? A Khối lập phương B Khối bát diện C Khối tứ diện D Khối 12 mặt Câu Tìm giá trị lớn chất hàm số y = x3 − 2x2 − 4x + đoạn [1; 3] 67 A −4 B C −7 D −2 27 Câu Cho hình chóp S ABCD có đáy ABCD hình thang vng A D; AD = CD = a; AB = 2a; tam giác√S AB nằm mặt phẳng vng góc với (ABCD) Thể tích khối chóp √ S ABCD √ 3 √ a3 3 a a A B a3 C D [ = 60◦ , S O Câu [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ Khoảng cách từ O đến (S√BC) √ √ a 57 2a 57 a 57 B C D A a 57 17 19 19 Câu [1-c] Giá trị biểu thức log0,1 102,4 A 7, B 0, C 72 D −7, Câu Khối đa diện thuộc loại {4; 3} có đỉnh, cạnh, mặt? A đỉnh, 12 cạnh, mặt B đỉnh, 12 cạnh, mặt C đỉnh, 12 cạnh, mặt D đỉnh, 12 cạnh, mặt Câu Khối đa diện loại {4; 3} có tên gọi gì? A Khối lập phương B Khối tứ diện C Khối 12 mặt D Khối bát diện Câu Khối đa diện loại {5; 3} có tên gọi gì? A Khối bát diện B Khối 20 mặt C Khối tứ diện D Khối 12 mặt x+1 Câu Tính lim x→−∞ 6x − 1 B C D A 2n + Câu 10 Tìm giới hạn lim n+1 A B C D Câu 11 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x + A xy0 = −ey − B xy0 = ey − C xy0 = ey + D xy0 = −ey + Câu 12 Khối đa diện loại {4; 3} có số mặt A 12 B C 10 D Câu 13 Khối đa diện thuộc loại {3; 5} có đỉnh, cạnh, mặt? A 20 đỉnh, 30 cạnh, 20 mặt B 12 đỉnh, 30 cạnh, 12 mặt C 12 đỉnh, 30 cạnh, 20 mặt D 20 đỉnh, 30 cạnh, 12 mặt Câu 14 Phép đối xứng qua mp(P) biến đường thẳng d thành A d ⊥ P B d song song với (P) C d nằm P d ⊥ P D d nằm P Câu 15 Mỗi đỉnh hình đa diện đỉnh chung A Bốn cạnh B Hai cạnh C Ba cạnh D Năm cạnh Trang 1/11 Mã đề x−1 có đồ thị (C) Gọi I giao điểm hai tiệm cận (C) Xét x+2 tam giác √ ABI có hai đỉnh A,√B thuộc (C), đoạn thẳng AB có độ dài √ A 2 B C D Câu 16 [3-1214d] Cho hàm số y = Câu 17 [2] Tích tất nghiệm phương trình (1 + log2 x) log4 (2x) = 1 A B C D 2n − Câu 18 Tính lim 2n + 3n + A +∞ B C −∞ D Câu 19 Nhị thập diện (20 mặt đều) thuộc loại A {3; 4} B {4; 3} C {5; 3} D {3; 5} Trong khẳng định sau đây, khẳng định đúng? Câu 20 [3-12217d] Cho hàm số y = ln x+1 y y A xy = −e + B xy = e + C xy0 = −ey − D xy0 = ey − Câu 21 [2] Tổng nghiệm phương trình 6.4 x − 13.6 x + 6.9 x = A B C D Câu 22 Hàm số y = 2x3 + 3x2 + nghịch biến khoảng (hoặc khoảng) đây? A (−1; 0) B (−∞; 0) (1; +∞) C (0; 1) D (−∞; −1) (0; +∞) Câu 23 [4-1243d] Trong tất số phức z thỏa mãn hệ thức |z − + 3i| = |z − − 5i| Tìm giá trị nhỏ |z + + i| √ √ √ √ 12 17 A C 34 B D 68 17 Câu 24 Cho z1 , z2 hai nghiệm phương trình z2 + 3z + = Tính P = z1 z2 (z1 + z2 ) A P = −10 B P = −21 C P = 10 D P = 21 Câu 25 [4-1121h] Cho hình chóp S ABCD đáy ABCD hình vng, biết AB = a, ∠S AD = 90◦ tam giác S AB tam giác Gọi Dt đường thẳng qua D song song với S C Gọi I giao điểm Dt mặt phẳng (S AB) Thiết diện √ hình chóp S ABCD với √mặt phẳng (AIC) có diện tích √ 2 2 a a 11a a B C D A 16 32 Câu 26 Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim+ f (x) = lim− f (x) = +∞ B lim+ f (x) = lim− f (x) = a x→a x→a x→a x→a C lim f (x) = f (a) D f (x) có giới hạn hữu hạn x → a x→a 4x + Câu 27 [1] Tính lim bằng? x→−∞ x + A −4 B C D −1 Câu 28 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B ≤ m ≤ C ≤ m ≤ D < m ≤ Câu 29 [1] Tập xác định hàm số y = x−1 A D = R \ {1} B D = (0; +∞) C D = R \ {0} D D = R − n2 Câu 30 [1] Tính lim bằng? 2n + 1 1 A B C D − 2 Câu 31 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau Trang 2/11 Mã đề (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (III) B Cả ba mệnh đề C (I) (II) Câu 32 [2] Cho hàm số f (x) = x ln2 x Giá trị f (e) A 2e B 2e + C e D (II) (III) D Câu 33 Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim− f (x) = f (a) lim+ f (x) = f (b) B lim+ f (x) = f (a) lim+ f (x) = f (b) x→a x→b x→a x→b C lim+ f (x) = f (a) lim− f (x) = f (b) x→a x→b x→a x→b D lim− f (x) = f (a) lim− f (x) = f (b) √ Câu 34 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 63 B Vơ số C 64 D 62 Câu 35 Cho hình chóp S ABCD có đáy ABCD hình thoi với AC = 2BD = 2a tam giác S AD vng cân S√, (S AD) ⊥ (ABCD) Thể√tích khối chóp S ABCD là√ √ a3 a3 a3 a3 B C D A 12 12 d = 300 Câu 36 Cho khối lăng trụ đứng ABC.A0 B0C có đáy ABC tam giác vuông A BC = 2a, ABC Độ dài cạnh bên √ CC = 3a Thể tích V khối lăng trụ cho.3 √ √ 3a3 a A V = B V = 6a3 C V = D V = 3a3 2 Câu 37 Giá trị lim(2x2 − 3x + 1) x→1 A B C D +∞ Câu 38 [4] Cho lăng trụ ABC.A0 B0C có chiều cao đáy tam giác cạnh Gọi M, N P tâm mặt bên ABB0 A0 , ACC A0 , BCC B0 Thể tích khối đa diện lồi có đỉnh A, B, C, M, √ N, P √ √ √ 14 20 B A C D 3 Câu 39 Hàm số f có nguyên hàm K A f (x) có giá trị nhỏ K C f (x) xác định K B f (x) có giá trị lớn K D f (x) liên tục K √ Câu 40 Cho chóp S ABCD có đáy ABCD hình vng cạnh a Biết S A ⊥ (ABCD) S A = a Thể tích √ khối chóp S ABCD √ √ a a3 a3 C A B a D 12 Câu 41 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 2020 B 13 C 2020 D log2 13 Câu 42 Hàm số sau khơng có cực trị x−2 A y = x3 − 3x B y = 2x + C y = x4 − 2x + 1 D y = x + x Trang 3/11 Mã đề [ = 60◦ , S O Câu 43 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ A đến (S√BC) √ a 57 a 57 2a 57 A B C D a 57 17 19 19 Câu 44 Mặt phẳng (AB0C ) chia khối lăng trụ ABC.A0 B0C thành khối đa diện nào? A Hai khối chóp tứ giác B Một khối chóp tam giác, khối chóp ngữ giác C Một khối chóp tam giác, khối chóp tứ giác D Hai khối chóp tam giác Câu 45 [1] Phương trình log3 (1 − x) = có nghiệm A x = −2 B x = −8 C x = −5 D x = Câu 46 [2] Biết M(0; 2), N(2; −2) điểm cực trị đồ thị hàm số y = ax3 + bx2 + cx + d Tính giá trị hàm số x = −2 A y(−2) = −18 B y(−2) = C y(−2) = D y(−2) = 22 Câu 47 Khối chóp ngũ giác có số cạnh A 12 cạnh B cạnh C 11 cạnh D 10 cạnh Câu 48 [3-1121d] Sắp sách Toán sách Vật Lý lên kệ dài Tính xác suất để hai sách môn nằm cạnh B C D A 10 10 Câu 49 [1] Giá trị biểu thức log √3 10 1 B C D −3 A − 3 Câu 50 Khối lăng trụ tam giác có đỉnh, cạnh, mặt? A đỉnh, cạnh, mặt B đỉnh, cạnh, mặt C đỉnh, cạnh, mặt D đỉnh, cạnh, mặt Câu 51 Cho lăng trụ ABC.A0 B0C có cạnh đáy a Cạnh bên 2a Thể tích khối lăng trụ ABC.A0 B0C √ √ a3 a3 a3 3 A a B C D Câu 52 có nghĩa √ Biểu thức sau không √ −3 −1 A −1 B C (−1)−1 D (− 2)0 Câu 53 [2-c] Giá trị lớn hàm số y = x(2 − ln x) đoạn [2; 3] A − ln B −2 + ln C log2 240 log2 15 Câu 54 [1-c] Giá trị biểu thức − + log2 log3,75 log60 A B C Câu 55 [1] !Tập xác định hàm số y != log3 (2x + 1) ! 1 A −∞; B −∞; − C − ; +∞ 2 √ Câu 56 Thể tích khối lập phương √ có cạnh a √ √ 2a B A 2a3 C V = a3 D e D −8 ! D ; +∞ D V = 2a3 Câu 57 [2] Tổng nghiệm phương trình x −3x+8 = 92x−1 A B C D Trang 4/11 Mã đề Câu 58 [3-12216d] Tìm tất giá trị thực tham số m để phương trình log23 √ i h q x+ log23 x + 1+4m−1 = có nghiệm thuộc đoạn 1; A m ∈ [−1; 0] B m ∈ [0; 4] C m ∈ [0; 1] D m ∈ [0; 2] Câu 59 Tìm tất khoảng đồng biến hàm số y = x3 − 2x2 + 3x − A (1; +∞) B (−∞; 1) (3; +∞) C (−∞; 3) D (1; 3) Câu 60 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a A B C a D a 3 log 2x Câu 61 [1229d] Đạo hàm hàm số y = x2 − ln 2x − ln 2x − log 2x B y0 = C y0 = D y0 = A y0 = 3 2x ln 10 2x ln 10 x ln 10 x3 Câu 62 Vận tốc chuyển động máy bay v(t) = 6t2 + 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ đến giây thứ 15 bao nhiêu? A 1202 m B 2400 m C 6510 m D 1134 m Câu 63 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C ! 1 Câu 64 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A +∞ B C D D Câu 65 [2-c] Giá trị nhỏ hàm số y = x2 ln x đoạn [e−1 ; e] 1 A − B − C −e D − e 2e e 0 0 Câu 66 [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b, AA = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ a b2 + c2 b a2 + c2 abc b2 + c2 c a2 + b2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 67 Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) (S AC) vng góc với (S BC) √ Thể tích khối chóp S 3.ABC √ √ √ a a a3 a3 A B C D 12 12 d = 60◦ Đường chéo Câu 68 Cho lăng trụ đứng ABC.A0 B0C có đáy tam giác vuông A, AC = a, ACB 0 0 ◦ BC mặt bên (BCC B ) tạo với mặt phẳng (AA C C) góc 30 Thể tích khối lăng trụ ABC.A0 B0C √ √ √ √ a3 2a3 4a3 A a B C D 3 Trang 5/11 Mã đề 9x Câu 69 [2-c] Cho hàm số f (x) = x với x ∈ R hai số a, b thỏa mãn a + b = Tính f (a) + f (b) +3 A B C D −1 Câu 70 [2-1223d] Tổng nghiệm phương trình log3 (7 − x ) = − x A B C D Câu 71 Ba kích thước hình hộp chữ nhật làm thành cấp số nhân có cơng bội Thể tích hình hộp √ 1728 Khi đó, kích thước hình hộp √ cho B 6, 12, 24 C 8, 16, 32 D 2, 4, A 3, 3, 38 Câu 72 Cho hình chóp S ABCD có √ đáy ABCD hình chữ nhật AD = 2a, AB = a Gọi H trung điểm AD, biết S H ⊥ (ABCD), S A = a Thể tích khối chóp √ S ABCD √ 3 2a 4a 2a 4a3 A B C D 3 3 Câu 73 [2] Số lượng loài vi khuẩn sau t xấp xỉ đẳng thức Qt = Q0 e0,195t , Q0 số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu 5.000 sau giờ, số lượng vi khuẩn đạt 100.000 con? A 24 B 15, 36 C 3, 55 D 20 Câu 74 [3-12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C Vô nghiệm D Câu 75 [2]√Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m2 + 1)2 x [0; 1] B m = ± C m = ±3 D m = ±1 A m = ± Câu 76 Cho hình chóp S ABC Gọi M trung điểm S A Mặt phẳng BMC chia hình chóp S ABC thành A Một hình chóp tứ giác hình chóp ngũ giác B Một hình chóp tam giác hình chóp tứ giác C Hai hình chóp tam giác D Hai hình chóp tứ giác 7n2 − 2n3 + 3n3 + 2n2 + A B - Câu 78 Hàm số y = x + có giá trị cực đại x A B Câu 77 Tính lim C D C −2 D −1 Câu 79 Mệnh đề sau sai? A F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) !0 Z B f (x)dx = f (x) C Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Z f (x)dx = F(x) + C π π Câu 80 Cho hàm số y = sin x − sin x Giá trị lớn hàm số khoảng − ; 2 A B −1 C D D Nếu F(x) nguyên hàm f (x) (a; b) C số Câu 81 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng 0 (AB0C) √ (A C D) √ √ √ 2a a a A B a C D Trang 6/11 Mã đề Câu 82 Cho z là√nghiệm phương trình√ x2 + x + = Tính P = z4 + 2z3 − z −1 + i −1 − i B P = C P = 2i D P = A P = 2 Câu 83 Cho hai đường thẳng d d0 cắt Có phép đối xứng qua mặt phẳng biến d thành d0 ? A Có hai B Có C Có vơ số D Khơng có Câu 84 Phần thực phần ảo số phức z = −i + A Phần thực −1, phần ảo −4 B Phần thực −1, phần ảo C Phần thực 4, phần ảo −1 D Phần thực 4, phần ảo Câu 85 Khối đa diện thuộc loại {3; 3} có đỉnh, cạnh, mặt? A đỉnh, cạnh, mặt B đỉnh, cạnh, mặt C đỉnh, cạnh, mặt D đỉnh, cạnh, mặt un Câu 86 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A B C −∞ D +∞ Câu 87 Hình lăng trụ tam giác có mặt phẳng đối xứng? A mặt B mặt C mặt D mặt Câu 88 Cho số phức z thỏa mãn |z + √ 3| = |z − 2i| = |z − 2√− 2i| Tính |z| C |z| = 17 D |z| = 17 A |z| = 10 B |z| = 10 Câu 89 Điểm cực đại đồ thị hàm số y = 2x3 − 3x2 − A (−1; −7) B (0; −2) C (2; 2) D (1; −3) Câu 90 Tìm m để hàm số y = x4 − 2(m + 1)x2 − có cực trị A m > −1 B m > C m ≥ D m > Câu 91 Giá trị cực đại hàm số y = x3 − 3x + A B C −1 D Câu 92 Hình lập phương có mặt phẳng đối xứng? A mặt B mặt C mặt D mặt Câu 93 Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận tháng người phải trả cho ngân hàng triệu đồng trả tháng hết nợ (tháng cuối trả triệu) Hỏi sau tháng người trả hết nợ ngân hàng A 22 B 23 C 24 D 21 x−2 Câu 94 Tính lim x→+∞ x + D −3 A B C − − xy Câu 95 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 11 − 11 − 19 11 + 19 18 11 − 29 A Pmin = B Pmin = C Pmin = D Pmin = 9 21 Câu 96 [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc mơn Tốn Mơn thi hình thức trắc nghiệm 50 câu, câu có phương án trả lời, có phương án Mỗi câu trả lời cộng 0, điểm, câu trả lời sai bị trừ 0, điểm Bạn An học mơn Tốn nên định chọn ngẫu nhiên hết 50 câu trả lời Xác suất để bạn An đạt điểm mơn Tốn C 40 (3)10 C 10 (3)40 C 20 (3)20 C 20 (3)30 A 50 50 B 50 50 C 50 50 D 50 50 4 4 Trang 7/11 Mã đề x=t Câu 97 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : y = −1 hai mặt phẳng (P), (Q) z = −t có phương trình x + 2y + 2z + = 0, x + 2y + 2z + = Viết phương trình mặt cầu (S ) có tâm I thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) (Q) 9 B (x − 3)2 + (y − 1)2 + (z − 3)2 = A (x + 3)2 + (y + 1)2 + (z − 3)2 = 4 9 2 2 2 C (x + 3) + (y + 1) + (z + 3) = D (x − 3) + (y + 1) + (z + 3) = 4 π Câu 98 Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại điểm x = , x = π Tính giá √ trị biểu thức T = a + b √ √ C T = D T = 3 + A T = B T = Câu 99 Khối đa diện loại {4; 3} có số cạnh A 12 B 10 x2 − 5x + Câu 100 Tính giới hạn lim x→2 x−2 A −1 B C 20 D 30 C D √ Câu 101 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 58 3a 38 a 38 3a B C D A 29 29 29 29 2x + Câu 102 Tính giới hạn lim x→+∞ x + 1 A B −1 C D Câu 103 định sau sai? ! Z Các khẳng Z Z A Z C f (x)dx = f (x) Z k f (x)dx = k f (x)dx, k số f (x)dx = F(x) + C ⇒ B Z D f (x)dx = F(x) +C ⇒ f (t)dt = F(t) + C Z f (u)dx = F(u) +C 3a , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ 2a a a a A B C D 3 Câu 105 [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn tháng, lãi suất 2% quý Sau tháng, người gửi thêm 100 triệu đồng với kỳ hạn lãi suất trước Tổng số tiền người nhận sau năm gửi tiền vào ngân hàng gần kết sau đây? Biết suốt thời gian gửi tiền lãi suất ngân hàng khơng thay đổi người khơng rút tiền A 220 triệu B 212 triệu C 210 triệu D 216 triệu √ Câu 106 Xác định phần ảo √ số phức z = ( + 3i)2 √ A −7 B C −6 D Câu 104 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = Câu 107 [2] Đạo hàm hàm số y = x ln x A y0 = + ln x B y0 = ln x − C y0 = x + ln x D y0 = − ln x Trang 8/11 Mã đề Câu 108 [2] Tổng nghiệm phương trình log4 (3.2 x − 1) = x − A B C D x+3 nghịch biến khoảng Câu 109 [2D1-3] Có giá trị nguyên tham số m để hàm số y = x−m (0; +∞)? A B C D Vô số Câu 110 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 2a, tam giác S AB đều, H trung điểm cạnh AB, biết S H ⊥ (ABCD).√Thể tích khối chóp S ABCD √ a3 2a3 a3 4a3 A B C D 3 Câu 111 Tìm m để hàm số y = x3 − 3mx2 + 3m2 có điểm cực trị A m , B m < C m = D m > Câu 112 Nếu không sử dụng thêm điểm khác ngồi đỉnh hình lập phương chia hình lập phương thành A Bốn tứ diện hình chóp tam giác B Năm hình chóp tam giác đều, khơng có tứ diện C Một tứ diện bốn hình chóp tam giác D Năm tứ diện x x−3 x−2 x−1 + + + y = |x + 2| − x − m (m tham x−2 x−1 x x+1 số thực) có đồ thị (C1 ) (C2 ) Tập hợp tất giá trị m để (C1 ) cắt (C2 ) điểm phân biệt A (−∞; 2) B [2; +∞) C (2; +∞) D (−∞; 2] Câu 113 [4-1213d] Cho hai hàm số y = Câu 114 [1233d-2] Mệnh đề sau sai? Z f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z Z B [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z Z C k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z D [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R A Câu 115 [2] Một người gửi 9, triệu đồng với lãi suất 8, 4% năm lãi suất hàng năm nhập vào vốn Hỏi theo cách sau năm người thu tổng số tiền 20 triệu đồng (Biết lãi suất không thay đổi) A 10 năm B năm C năm D năm Câu 116 Cho hình chóp S ABC có đáy ABC tam giác cạnh a, biết S A ⊥ (ABC) (S BC) hợp với đáy (ABC) góc 60◦ Thể tích khối chóp S ABC √ √ √ a3 a3 a3 a3 B C D A 12 Câu 117 Tìm giá trị nhỏ hàm số y = (x2 − 2x + 3)2 − A −5 B −7 C Không tồn D −3 Câu 118 Hàm số y = x3 − 3x2 + đồng biến trên: A (−∞; 2) B (0; +∞) C (0; 2) D (−∞; 0) (2; +∞) Câu 119 [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép ổn định tháng lĩnh 61.758.000 Hỏi lãi suất ngân hàng tháng bao nhiêu? Biết lãi suất không thay đổi thời gian gửi A 0, 6% B 0, 5% C 0, 7% D 0, 8% Trang 9/11 Mã đề Câu 120 Hàm số y = −x3 + 3x2 − đồng biến khoảng đây? A (2; +∞) B (0; 2) C (−∞; 1) D R Câu 121 Tứ diện có mặt phẳng đối xứng? A mặt B 10 mặt C mặt D mặt t Câu 122 [4] Xét hàm số f (t) = t , với m tham số thực Gọi S tập tất giá trị m + m2 cho f (x) + f (y) = 1, với số thực x, y thỏa mãn e x+y ≤ e(x + y) Tìm số phần tử S A Vô số B C D Câu 123 Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ A lim [ f (x) − g(x)] = a − b B lim [ f (x) + g(x)] = a + b x→+∞ x→+∞ f (x) a C lim [ f (x)g(x)] = ab D lim = x→+∞ x→+∞ g(x) b Câu 124 Khi chiều cao hình chóp tăng lên n lần cạnh đáy giảm n lần thể tích A Tăng lên n lần B Tăng lên (n − 1) lần C Giảm n lần D Không thay đổi Câu 125 Gọi M, m giá trị lớn nhất, giá trị nhỏ hàm số y = (x2 − 3)e x đoạn [0; 2] Giá trị biểu thức P = (m2 − 4M)2019 A e2016 B 22016 C D Câu 126 [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = z1 thỏa mãn |z1 − − i| = Diện tích hình phẳng giới hạn hai quỹ tích biểu diễn hai số phức z z1 gần giá trị nhất? A 0, B 0, C 0, D 0, Câu 127 [1] Cho a > 0, a , Giá trị biểu thức alog a √ A B C 25 D 5 d = 90◦ , ABC d = 30◦ ; S BC tam giác cạnh a (S AB) ⊥ Câu 128 Cho hình chóp S ABC có BAC (ABC) Thể √ √ √ tích khối chóp S ABC √ a3 a3 a B 2a C D A 12 24 24 Câu 129 [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% năm Biết không rút tiền khỏi ngân hàng sau năm số tiền lãi nhập vào só tiền vốn để tính lãi cho năm Hỏi sau năm người thu (cả số tiền gửi ban đầu lãi) gấp đôi số tiền gửi ban đầu, giả định khoảng thời gian lãi suất khơng thay đổi người khơng rút tiền ra? A 12 năm B 14 năm C 11 năm D 10 năm √ Câu 130 Một chất điểm chuyển động trục với vận tốc v(t) = 3t2 − 6t(m/s) Tính qng đường chất điểm từ thời điểm t = 0(s) đến thời điểm t = 4(s) A 24 m B 12 m C m D 16 m - - - - - - - - - - HẾT- - - - - - - - - - Trang 10/11 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 B A D A D D D D B 10 A 11 B 12 13 C 14 15 C 16 17 A 18 19 D 20 21 D 22 A 23 B 24 25 A 27 B C D B D B C 26 B 28 A 29 D 30 D 31 C 32 D 33 C 34 D 36 A 35 A 37 38 B 39 D 40 A 41 D 42 43 45 C C 46 A D 48 B 50 49 A B 52 53 C 56 A 57 C 58 A B D 60 A B 61 D 54 D 55 59 B 44 B 47 51 B C 62 C 63 B 64 B 65 B 66 B 67 68 A C 69 B 70 71 B 72 B 73 B 74 B 75 77 D B 79 A C 76 C 78 C 80 A 81 D 82 C 83 A 84 85 A 86 B B 87 B 88 89 B 90 A C 91 A 92 A 93 A 94 A 95 A 96 C 98 C 97 D 99 A 101 100 A B 102 A 103 105 D 104 A B 106 B 107 A 108 B 109 A 110 111 A 112 C D 113 B 114 C 115 B 116 C 117 C 118 119 C 120 D B 121 D 122 C 123 D 124 C 125 D 126 A 127 C 128 129 C 130 C D