TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó[.]
TỐN PDF LATEX TRẮC NGHIỆM ƠN THI MƠN TỐN THPT (Đề thi có 10 trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Phép đối xứng qua mp(P) biến đường thẳng d thành A d song song với (P) B d ⊥ P C d nằm P D d nằm P d ⊥ P Câu Cho hình chóp S ABC có đáy ABC tam giác vng cân A với AB = AC = a, biết tam giác S AB cân S nằm mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) góc 45◦ Thể tích khối chóp S ABC a3 a3 a3 A a B C D 24 12 ! − 12x = có nghiệm thực? Câu [2] Phương trình log x log2 12x − A B C Vô nghiệm D Câu Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a S A ⊥ (ABCD) Mặt bên (S CD) hợp với √ đáy góc 60◦ Thể tích khối √ chóp S ABCD √ 3 √ a 2a a B C D a3 A 3 x+3 Câu [2D1-3] Có giá trị nguyên tham số m để hàm số y = nghịch biến khoảng x−m (0; +∞)? A Vô số B C D Z Câu Cho xe2x dx = ae2 + b, a, b số hữu tỷ Tính a + b 1 A B Câu Khối đa diện loại {4; 3} có số cạnh A 10 B 30 C D C 20 D 12 Câu Tính diện tích hình phẳng giới hạn đồ thị hàm số y = − x2 y = x 11 C D A B 2 Câu [1-c] Giá trị biểu thức log0,1 102,4 A 72 B 0, C −7, D 7, Câu 10 Cho hàm số f (x) liên tục đoạn [0; 1] thỏa mãn f (x) = 6x f (x )− √ A B C Câu 11 [2] Tổng nghiệm phương trình 6.4 x − 13.6 x + 6.9 x = A B C Z 3x + Tính f (x)dx D −1 D Câu 12 [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép ổn định tháng lĩnh 61.758.000 Hỏi lãi suất ngân hàng tháng bao nhiêu? Biết lãi suất không thay đổi thời gian gửi A 0, 5% B 0, 6% C 0, 8% D 0, 7% Câu 13 Tứ diện có mặt phẳng đối xứng? A mặt B 10 mặt C mặt D mặt Trang 1/10 Mã đề Câu 14 [2] Cho hai mặt phẳng (P) (Q) vuông góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ √ a a B C D a A 2a 2 √ x + 3x + Câu 15 Tính giới hạn lim x→−∞ 4x − 1 A B C D − 4 Câu 16 Cho hình chữ nhật ABCD, cạnh AB = 4, AD = Gọi M, N trung điểm cạnh AB CD Cho hình chữ nhật quay quanh MN ta hình trụ trịn xoay tích A 8π B 32π C 16π D V = 4π Câu 17 [2D1-3] Tìm giá trị tham số m để hàm số y = − x3 − mx2 − (m + 6)x + ln đồng biến √ đoạn có độ dài 24 A m = −3 B −3 ≤ m ≤ C m = D m = −3, m = Câu 18 [2-c] Giá trị lớn M giá trị nhỏ m hàm số y = x2 − ln x [e−1 ; e] A M = e−2 + 2; m = B M = e−2 + 1; m = C M = e2 − 2; m = e−2 + D M = e−2 − 2; m = Câu 19 Cho hình√ chóp S ABCD có đáy ABCD hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD),√S D = a Thể tích khối chóp S ABCD √ √ 3 √ a a a3 15 B a3 C D A 3 Câu 20 Khối đa diện loại {5; 3} có số mặt A 12 B 20 C 30 D Câu 21 [2]√Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2 + 1)2 x [0; 1] A m = ± B m = ± C m = ±3 D m = ±1 Câu 22 Nhị thập diện (20 mặt đều) thuộc loại A {3; 4} B {4; 3} C {5; 3} Câu 23 [2] Tổng nghiệm phương trình A B D {3; 5} x2 −4x+5 = C D Câu 24 [1] Tập nghiệm phương trình log2 (x2 − 6x + 7) = log2 (x − 3) A {5; 2} B {3} C {2} D {5} Câu 25 Khối đa diện loại {3; 5} có tên gọi gì? A Khối bát diện B Khối tứ diện C Khối 12 mặt D Khối 20 mặt Câu 26 Cho khối chóp S ABC √ có đáy ABC tam giác cạnh a Hai mặt bên (S AB) (S AC) vng góc √ với đáy S C = a 3Thể √ tích khối chóp S ABC √là √ 3 a 2a a a3 A B C D 12 2 Câu 27 [2] Tổng nghiệm phương trình x −3x+8 = 92x−1 A B C D Câu 28 [1] Phương trình log3 (1 − x) = có nghiệm A x = B x = −5 C x = −2 D x = −8 Câu 29 Khối đa diện loại {5; 3} có tên gọi gì? A Khối 20 mặt B Khối 12 mặt D Khối tứ diện C Khối bát diện Trang 2/10 Mã đề Câu 30 [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% năm Ông muốn hoàn nợ ngân hàng theo cách: Sau tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp cách tháng, số tiền hoàn nợ lần trả hết tiền nợ sau tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng lần hoàn nợ bao nhiêu? Biết lãi suất ngân hàng không đổi thời gian ông A hoàn nợ 100.1, 03 (1, 01)3 triệu B m = triệu A m = (1, 01)3 − 120.(1, 12)3 100.(1, 01)3 C m = triệu D m = triệu (1, 12)3 − Câu 31 Tập xác định hàm số f (x) = −x3 + 3x2 − A [−1; 2) B (1; 2) C [1; 2] D (−∞; +∞) x2 − 12x + 35 x→5 25 − 5x 2 A −∞ B − C D +∞ 5 Câu 33 Tìm giá trị tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + nghịch biến khoảng (−∞; +∞) A (−∞; −3] B [−3; 1] C [1; +∞) D [−1; 3] 2x + Câu 34 Tính giới hạn lim x→+∞ x + 1 A B C D −1 Câu 35 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? Câu 32 Tính lim (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai ngun hàm D hàm số sai khác hàm số A Câu (I) sai B Câu (III) sai C Câu (II) sai D Khơng có câu sai 0 Câu 36 [4-1214h] Cho khối lăng trụ ABC.A B C , khoảng cách từ C đến đường thẳng BB0 2, khoảng √ cách từ A đến đường thẳng BB0 CC √ 3, hình chiếu vng góc A lên mặt phẳng (A0 B0C ) trung điểm M B0C A0 M = Thể tích khối lăng trụ cho √ √ A B C D Câu 37 [2] Đạo hàm hàm số y = x ln x A y0 = + ln x B y0 = x + ln x C y0 = − ln x D y0 = ln x − Câu 38 Tìm giá trị nhỏ hàm số y = (x2 − 2x + 3)2 − A −5 B Khơng tồn C −7 x−2 Câu 39 Tính lim x→+∞ x + A − B C −3 Câu 40 Thập nhị diện (12 mặt đều) thuộc loại A {4; 3} B {3; 4} C {3; 3} D −3 D D {5; 3} Trang 3/10 Mã đề Câu 41 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 8a 2a a 5a B C D A 9 9 x−2 x−1 x x+1 Câu 42 [4-1212d] Cho hai hàm số y = + + + y = |x + 1| − x − m (m tham x−1 x x+1 x+2 số thực) có đồ thị (C1 ) (C2 ) Tập hợp tất giá trị m để (C1 ) cắt (C2 ) điểm phân biệt A (−∞; −3) B (−∞; −3] C [−3; +∞) D (−3; +∞) Câu 43 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a B a D A C Câu 44 Khối đa diện sau có mặt khơng phải tam giác đều? A Tứ diện B Bát diện C Nhị thập diện D Thập nhị diện Câu 45 Cho hình chóp S ABCD có đáy ABCD hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy góc 45◦ AB = 3a, BC = 4a Thể tích khối chóp S ABCD √ 3 10a A 40a3 B 10a3 C 20a3 D Câu 46 Mỗi đỉnh hình đa diện đỉnh chung A Năm mặt B Hai mặt C Ba mặt D Bốn mặt Câu 47 Cho hình chóp S ABC có đáy ABC tam giác cạnh a, biết S A ⊥ (ABC) (S BC) hợp với đáy (ABC) góc 60◦ Thể√tích khối chóp S ABC √ √ a3 a3 a3 a3 B C D A 12 4 Câu 48 [3-1213h] Hình hộp chữ nhật khơng có nắp tích 3200 cm3 , tỷ số chiều cao chiều rộng Khi tổng mặt hình nhỏ nhất, tính diện tích mặt đáy hình hộp A 160 cm2 B 120 cm2 C 160 cm2 D 1200 cm2 Câu 49 Khối đa diện loại {5; 3} có số cạnh A 12 B 20 C 30 D C D 2n − Câu 50 Tính lim 3n + n4 A B Câu 51 Trong không gian, cho tam giác ABC có đỉnh B, C thuộc trục Ox Gọi E(6; 4; 0), F(1; 2; 0) hình chiếu B, C lên cạnh! AC, AB Tọa độ hình chiếu A lên BC ! ! A ; 0; B ; 0; C (2; 0; 0) D ; 0; 3 q Câu 52 [3-12216d] Tìm tất giá trị thực tham số m để phương trình log23 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 4] B m ∈ [0; 2] C m ∈ [0; 1] D m ∈ [−1; 0] π π Câu 53 Cho hàm số y = sin x − sin3 x Giá trị lớn hàm số khoảng − ; 2 A −1 B C D Trang 4/10 Mã đề Câu 54 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có f (x) = F(x) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) Câu 55 Tính lim x→2 A x+2 bằng? x B C D Câu 56 Tính thể tích khối lập phương biết tổng diện tích tất mặt 18 √ A B 3 C D 27 Câu 57 Khối đa diện loại {4; 3} có số đỉnh A 10 B C D x = + 3t Câu 58 [1232h] Trong không gian Oxyz, cho đường thẳng d : y = + 4t Gọi ∆ đường thẳng qua z = điểm A(1; 1; 1) có véctơ phương ~u = (1; −2; 2) Đường phân giác góc nhọn tạo d ∆ có phương trình x = −1 + 2t x = + 3t x = + 7t x = −1 + 2t A C D y = −10 + 11t B y = + 4t y=1+t y = −10 + 11t z = + 5t z = −6 − 5t z = − 5t z = − 5t Câu 59 [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc mơn Tốn Mơn thi hình thức trắc nghiệm 50 câu, câu có phương án trả lời, có phương án Mỗi câu trả lời cộng 0, điểm, câu trả lời sai bị trừ 0, điểm Bạn An học mơn Tốn nên định chọn ngẫu nhiên hết 50 câu trả lời Xác suất để bạn An đạt điểm mơn Tốn 10 40 20 20 C50 C50 C50 C50 (3)20 (3)40 (3)10 (3)30 B C D A 450 450 450 450 Câu 60 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B Câu 61.! Dãy số sau có giới! hạn 0? n n A B − 3 C !n C e D !n D Câu 62 Khối đa diện thuộc loại {3; 4} có đỉnh, cạnh, mặt? A đỉnh, 12 cạnh, mặt B đỉnh, 12 cạnh, mặt C đỉnh, 12 cạnh, mặt D đỉnh, 12 cạnh, mặt x2 − 5x + x→2 x−2 B −1 Câu 63 Tính giới hạn lim A C Câu 64 [2-c] Giá trị lớn hàm số y = x(2 − ln x) đoạn [2; 3] A B −2 + ln C − ln D D e Trang 5/10 Mã đề 9t , với m tham số thực Gọi S tập tất giá trị m cho 9t + m2 f (x) + f (y) = 1, với số thực x, y thỏa mãn e x+y ≤ e(x + y) Tìm số phần tử S A B Vô số C D Câu 65 [4] Xét hàm số f (t) = Câu 66 Khối đa diện loại {3; 3} có tên gọi gì? A Khối bát diện B Khối 12 mặt C Khối tứ diện D Khối lập phương Câu 67 [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% năm Biết không rút tiền khỏi ngân hàng sau năm, số tiền lãi nhập vào vốn ban đầu Sau năm rút lãi người thu số tiền lãi A 50, triệu đồng B 20, 128 triệu đồng C 3, triệu đồng D 70, 128 triệu đồng Câu 68 [1] Tính lim x→3 A x−3 bằng? x+3 B −∞ C +∞ Câu 69 Giá √ trị cực đại hàm số y = √ x − 3x − 3x + √ A − B −3 − C −3 + D √ D + Câu 70 Cho hàm số y = x3 − 2x2 + x + ! Mệnh đề đúng? ! 1 B Hàm số nghịch biến khoảng −∞; A Hàm số đồng biến khoảng ; 3 ! C Hàm số nghịch biến khoảng ; D Hàm số nghịch biến khoảng (1; +∞) Câu 71 [3-c] Cho < x < 64 Tìm giá trị lớn f (x) = log42 x + 12 log22 x log2 A 81 B 82 C 96 D 64 x Câu 72 [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 1% năm Biết không rút tiền khỏi ngân hàng sau tháng, số tiền lãi nhập vào vốn ban đầu để tính lãi cho tháng Hỏi sau năm người thu (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định thời gian lãi suất không đổi người khơng rút tiền ra? A 10 năm B 11 năm C 12 năm D 13 năm 0 0 Câu 73.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a B C D A 2 Câu 74 Tìm giá trị lớn chất hàm số y = x3 − 2x2 − 4x + đoạn [1; 3] A −2 B −4 C −7 D 67 27 Câu 75 [2-c] Gọi M, m giá trị lớn giá trị nhỏ hàm số y = x + ln x đoạn [1; e] Giá trị T = M + m 2 A T = + B T = e + C T = e + D T = e + e e Câu 76 Cho hình chóp S ABCD có cạnh đáy 2a Mặt bên hình chóp tạo với đáy góc 60◦ Mặt phẳng (P) chứa cạnh AB qua trọng tâm G tam giác S AC cắt S C, S D M, n Thể tích khối √ chóp S ABMN √ √ √ 2a a3 4a3 5a3 A B C D 3 Câu 77 Khối đa diện thuộc loại {3; 5} có đỉnh, cạnh, mặt? A 20 đỉnh, 30 cạnh, 20 mặt B 20 đỉnh, 30 cạnh, 12 mặt C 12 đỉnh, 30 cạnh, 12 mặt D 12 đỉnh, 30 cạnh, 20 mặt Trang 6/10 Mã đề Câu 78 Gọi M, m giá trị lớn nhất, giá trị nhỏ hàm số y = (x2 − 3)e x đoạn [0; 2] Giá trị biểu thức P = (m2 − 4M)2019 A 22016 B C e2016 D Câu 79 Hàm số y = x3 − 3x2 + đồng biến trên: A (−∞; 2) B (0; 2) C (−∞; 0) (2; +∞) D (0; +∞) Câu 80 Biểu diễn hình học số phức z = + 8i điểm điểm sau đây? A A(−4; 8) B A(4; 8) C A(4; −8) D A(−4; −8)( Câu 81 [1] Hàm số đồng biến khoảng (0; +∞)? √ B y = loga x a = − A y = log π4 x D y = log 14 x C y = log √2 x Câu 82 [2] Một người gửi 9, triệu đồng với lãi suất 8, 4% năm lãi suất hàng năm nhập vào vốn Hỏi theo cách sau năm người thu tổng số tiền 20 triệu đồng (Biết lãi suất không thay đổi) A 10 năm B năm C năm D năm log(mx) = có nghiệm thực Câu 83 [3-1226d] Tìm tham số thực m để phương trình log(x + 1) A m < ∨ m = B m < ∨ m > C m ≤ D m < Câu 84 [2D1-3] Cho hàm số y = − x + mx2 + (3m + 2)x + Tìm giá trị tham số m để hàm số nghịch biến R A −2 < m < −1 B (−∞; −2) ∪ (−1; +∞) C −2 ≤ m ≤ −1 D (−∞; −2] ∪ [−1; +∞) Câu 85 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ơng ta muốn hồn nợ cho ngân hàng theo cách: Sau tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách tháng, số tiền hoàn nợ tháng ông A trả hết nợ sau năm kể từ ngày vay Biết tháng ngân hàng tính lãi số dư nợ thực tế tháng Hỏi số tiền tháng ông ta cần trả cho ngân hàng gần với số tiền ? A 3, 03 triệu đồng B 2, 25 triệu đồng C 2, 22 triệu đồng D 2, 20 triệu đồng Câu 86 Giá trị lim (3x2 − 2x + 1) x→1 A +∞ B C D Câu 87 Hàm số y = 2x + 3x + nghịch biến khoảng (hoặc khoảng) đây? A (−∞; −1) (0; +∞) B (−1; 0) C (−∞; 0) (1; +∞) D (0; 1) Câu 88 Cho hình chóp S ABC có đáy ABC tam giác vuông cân B với AC = a, biết S A ⊥ (ABC) S B hợp √ với đáy góc 60◦ Thể √ tích khối chóp S ABC √ √ a3 a3 a3 a3 A B C D 24 48 24 Câu 89 Cho hàm số y = x3 + 3x2 Mệnh đề sau đúng? A Hàm số nghịch biến khoảng (−∞; −2) (0; +∞) B Hàm số nghịch biến khoảng (−2; 1) C Hàm số đồng biến khoảng (−∞; −2) (0; +∞) D Hàm số đồng biến khoảng (−∞; 0) (2; +∞) Câu 90 Nếu hình chóp có chiều cao cạnh đáy tăng lên n lần thể tích tăng lên? A n3 lần B 2n2 lần C 2n3 lần D n3 lần Câu 91 Cho hình chóp S ABCD có đáy ABCD hình chữ nhật AB = 2a, BC = 4a (S AB) ⊥ (ABCD) Hai mặt bên (S BC) (S AD) hợp với đáy góc 30◦ √Thể tích khối chóp S ABCD √ √ √ 3 3 8a a 8a 4a A B C D 9 Trang 7/10 Mã đề d = 300 Câu 92 Cho khối lăng trụ đứng ABC.A0 B0C có đáy ABC tam giác vng A BC = 2a, ABC Độ dài cạnh bên CC = 3a Thể tích V √ khối lăng trụ cho √ 3 √ 3a a B V = C V = 6a3 D V = 3a3 A V = 2 Câu 93 [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% tháng Biết không rút tiền khỏi ngân hàng sau tháng, số tiền lãi nhập vào vốn ban đầu để tính lãi cho tháng Hỏi sau tháng, người lĩnh số tiền (cả vốn lẫn lãi) gần với số tiền đây, khoảng thời gian người khơng rút tiền lãi suất không thay đổi? A 102.423.000 B 102.424.000 C 102.016.000 D 102.016.000 Câu 94 đề sau Z [1233d-2] Mệnh Z Z sai? A Z B [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z Z D [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R C Câu 95 [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% năm Biết khơng rút tiền khỏi ngân hàng sau năm số tiền lãi nhập vào só tiền vốn để tính lãi cho năm Hỏi sau năm người thu (cả số tiền gửi ban đầu lãi) gấp đôi số tiền gửi ban đầu, giả định khoảng thời gian lãi suất khơng thay đổi người không rút tiền ra? A 11 năm B 14 năm C 10 năm D 12 năm Câu 96 Cho tứ diện ABCD tích 12 G trọng tâm tam giác BCD Tính thể tích V khối chóp A.GBC A V = B V = C V = D V = ! 3n + 2 + a − 4a = Tổng phần tử Câu 97 Gọi S tập hợp tham số nguyên a thỏa mãn lim n+2 S A B C D Câu 98 Cho khối chóp có đáy n−giác Mệnh đề sau đúng? A Số cạnh khối chóp 2n B Số đỉnh khối chóp 2n + C Số mặt khối chóp 2n+1 D Số mặt khối chóp số cạnh khối chóp Câu 99 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A Cả ba câu sai B F(x) = G(x) khoảng (a; b) C G(x) = F(x) − C khoảng (a; b), với C số D F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số Câu 100 Khối đa diện loại {3; 5} có số cạnh A 12 B C 30 D 20 Câu 101 Khối đa diện loại {3; 3} có số cạnh A B C D Trang 8/10 Mã đề Câu 102 Thể tích khối lăng √ trụ tam giác có cạnh√bằng là: 3 A B C 4 Câu 103 Dãy số sau có giới hạn 0? n2 − 3n n2 − B u = A un = n 5n − 3n2 n2 C un = − 2n 5n + n2 √ D 12 D un = n2 + n + (n + 1)2 x Câu 104 [2] √ Tìm m để giá trị nhỏ hàm số y = 2x + (m √ + 1)2 [0; 1] A m = ± B m = ±3 C m = ± D m = ±1 Câu 105 Nếu không sử dụng thêm điểm khác ngồi đỉnh hình lập phương chia hình lập phương thành A Bốn tứ diện hình chóp tam giác B Một tứ diện bốn hình chóp tam giác C Năm hình chóp tam giác đều, khơng có tứ diện D Năm tứ diện Câu 106 [1-c] Giá trị biểu thức A −4 Câu 107 [1] Tính lim A log7 16 log7 15 − log7 B − n2 bằng? 2n2 + 1 B 15 30 C D −2 C − D Câu 108 Trong khẳng định sau, khẳng định sai? A F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x Z u (x) B dx = log |u(x)| + C u(x) C F(x) = − cos x nguyên hàm hàm số f (x) = sin x D Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số x−1 có đồ thị (C) Gọi I giao điểm hai tiệm cận (C) Xét x+2 tam giác B thuộc (C), đoạn thẳng AB có độ dài √ ABI có hai đỉnh A, √ √ A 2 B C D Câu 109 [3-1214d] Cho hàm số y = Câu 110 Khối đa diện loại {3; 3} có số mặt A B Câu 111 Hàm số y = A x = x − 3x + đạt cực đại x−2 B x = C D C x = D x = Câu 112 Mỗi đỉnh hình đa diện đỉnh chung A Hai cạnh B Ba cạnh C Năm cạnh D Bốn cạnh Câu 113 Cho hai đường thẳng phân biệt d d0 đồng phẳng Có phép đối xứng qua mặt phẳng biến d thành d0 ? A Khơng có B Có hai C Có hai D Có Câu 114 [2D1-3] Tìm giá trị tham số m để hàm số y = x3 − mx2 + 3x + đồng biến R A m ≤ B −2 ≤ m ≤ C m ≥ D −3 ≤ m ≤ Trang 9/10 Mã đề Câu 115 Trong mệnh đề đây, mệnh đề !nào sai? un = +∞ A Nếu lim un = a > lim = lim ! un B Nếu lim un = a < lim = > với n lim = −∞ v n ! un C Nếu lim un = a , lim = ±∞ lim = D Nếu lim un = +∞ lim = a > lim(un ) = +∞ Câu 116 [2] Tổng nghiệm phương trình x − 12.3 x + 27 = A B 10 C 12 Câu 117 Hàm số f có nguyên hàm K A f (x) có giá trị lớn K C f (x) liên tục K D 27 B f (x) xác định K D f (x) có giá trị nhỏ K Câu 118 Mệnh đề sau sai? Z A Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C B Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) !0 Z C f (x)dx = f (x) D F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) ! x3 −3mx2 +m Câu 119 [2] Tìm tất giá trị thực tham số m để hàm số f (x) = nghịch biến π khoảng (−∞; +∞) A m , B m = C m ∈ (0; +∞) D m ∈ R Câu 120 Khối đa diện loại {3; 4} có số mặt A 12 B C 10 D Câu 121 Tính diện tích hình phẳng giới hạn đường y = xe , y = 0, x = √ 3 C D A B 2 √ Câu 122 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A Vơ số B 64 C 62 D 63 x Câu 123 Gọi M, m giá trị lớn giá trị nhỏ hàm số y = x đoạn [−1; 1] Khi e 1 A M = e, m = B M = , m = C M = e, m = D M = e, m = e e Câu 124 [3-12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B ≤ m ≤ C < m ≤ D < m ≤ x Câu 125 Điểm cực đại đồ thị hàm số y = 2x3 − 3x2 − A (0; −2) B (2; 2) C (−1; −7) D (1; −3) Câu 126 [2] Biết M(0; 2), N(2; −2) điểm cực trị đồ thị hàm số y = ax3 + bx2 + cx + d Tính giá trị hàm số x = −2 A y(−2) = B y(−2) = 22 C y(−2) = −18 D y(−2) = !2x−1 !2−x 3 Câu 127 Tập số x thỏa mãn ≤ 5 A (+∞; −∞) B [1; +∞) C [3; +∞) D (−∞; 1] Trang 10/10 Mã đề 4x + Câu 128 [1] Tính lim bằng? x→−∞ x + A B −4 C D −1 Câu 129 ZCho hai hàmZy = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? f (x)dx = A Nếu Z B Nếu Z g(x)dx f (x) = g(x), ∀x ∈ R f (x)dx = Z f (x)dx = Z g(x)dx f (x) , g(x), ∀x ∈ R g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx C Nếu Câu 130 Cho hình chóp S ABCD √ có đáy ABCD hình vng cạnh a Hai mặt phẳng (S AB) (S AD) vng góc với đáy, S C = a Thể tích khối chóp S ABCD √ √ 3 a a a3 3 A a B C D - - - - - - - - - - HẾT- - - - - - - - - - Trang 11/10 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D D A B A D C 11 C 14 D 17 18 D 19 20 A 21 22 D 23 24 D 25 26 A D B D C B C D C 27 28 D 29 B D 31 30 A 32 C 33 34 C 35 36 D D B 44 D 46 B D 37 A B 40 42 C 12 15 38 B 10 D 13 C C 39 B 41 B 43 C 45 C 47 A 48 A 49 C 50 D 51 B 52 D 53 B 54 D 55 B 56 B 57 58 A 59 A 60 A 61 A 62 C 64 66 68 63 D C B 65 C 67 D 69 C B C 70 C 71 A 72 C 73 A 74 A 76 75 77 B 78 80 D B 82 D 84 86 C D 79 C 81 C 83 A 85 C B 87 C B 88 D 89 C 90 D 91 C 92 B 93 94 B 95 A C 96 98 A 97 C 99 C 100 C 101 102 C 103 104 D 105 106 A 108 B 109 D B C B D 113 D C 115 A 116 A 117 118 D 119 B C B 121 A 122 C 123 124 C 125 A 126 C 127 128 A 130 C 111 B 114 120 B 107 110 112 B 129 A B C B