TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [2] Tổng các nghiệm của phương trình 9x − 12 3x + 27 = 0 l[.]
TỐN PDF LATEX TRẮC NGHIỆM ƠN THI MƠN TỐN THPT (Đề thi có 10 trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu [2] Tổng nghiệm phương trình x − 12.3 x + 27 = A 27 B 10 C 12 D Câu [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C Vô số D Câu Gọi M, m giá trị lớn nhất, giá trị nhỏ hàm số y = (x2 − 3)e x đoạn [0; 2] Giá trị biểu thức P = (m2 − 4M)2019 A e2016 B 22016 C D Câu Tìm m để hàm số y = mx3 + 3x2 + 12x + đạt cực đại x = A m = −3 B m = −1 C m = −2 D m = Câu [3-12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C Vô nghiệm D Câu Cho số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = Tìm giá trị nhỏ P = xy + x + 2y + 17 A −5 B −12 C −15 D −9 log 2x Câu [1229d] Đạo hàm hàm số y = x2 − ln 2x − log 2x 1 − ln 2x B y0 = C y0 = D y0 = A y0 = 3 x ln 10 2x ln 10 x 2x ln 10 Câu Khối đa diện loại {3; 4} có số đỉnh A B C 10 D ! 1 Câu [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A +∞ B C D 2 Câu 10 [2-c] Giá trị lớn M giá trị nhỏ m hàm số y = x − ln x [e−1 ; e] A M = e−2 − 2; m = B M = e−2 + 2; m = C M = e−2 + 1; m = D M = e2 − 2; m = e−2 + π x Câu 11 [2-c] Giá trị lớn hàm số y = e cos x đoạn 0; √ √ π4 π3 π6 A e B C e D e 2 Câu 12 Giá trị lim (3x2 − 2x + 1) x→1 A B +∞ C Câu 13 Mỗi đỉnh hình đa diện đỉnh chung A Hai cạnh B Ba cạnh C Năm cạnh D D Bốn cạnh Câu 14 Cho hàm số y = x3 + 3x2 Mệnh đề sau đúng? A Hàm số đồng biến khoảng (−∞; −2) (0; +∞) B Hàm số nghịch biến khoảng (−2; 1) C Hàm số nghịch biến khoảng (−∞; −2) (0; +∞) D Hàm số đồng biến khoảng (−∞; 0) (2; +∞) Trang 1/10 Mã đề Câu 15 [3-c] Cho < x < 64 Tìm giá trị lớn f (x) = log42 x + 12 log22 x log2 x A 82 B 64 C 96 D 81 mx − Câu 16 Tìm m để hàm số y = đạt giá trị lớn [−2; 6] x+m A 67 B 45 C 26 D 34 Câu 17 Tính thể tích khối lập phương biết tổng diện tích tất mặt 18 √ A 27 B C D 3 √3 Câu 18 [1] Cho a > 0, a , Giá trị biểu thức loga a 1 B C D −3 A − 3 Câu 19 [4-1214h] Cho khối lăng trụ ABC.A0 B0C , khoảng cách từ √ C đến đường thẳng BB 2, khoảng 0 cách từ A đến đường thẳng BB CC √ 3, hình chiếu vng góc A lên mặt phẳng (A0 B0C ) trung điểm M B0C A0 M = Thể tích khối lăng trụ cho √ √ A B C D 12 + 22 + · · · + n2 Câu 20 [3-1133d] Tính lim n3 D A +∞ B C 3 Câu 21 Tính lim n+3 A B C D Câu 22 [3-12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B Vô nghiệm C D Câu 23 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu B Cả hai câu sai C Chỉ có (I) Câu 24 Tìm giá trị nhỏ hàm số y = (x2 − 2x + 3)2 − A −3 B −5 C Không tồn D Chỉ có (II) D −7 Câu 25 Khối đa diện loại {3; 4} có số cạnh A 10 B 12 C D + + ··· + n Mệnh đề sau đúng? Câu 26 [3-1132d] Cho dãy số (un ) với un = n2 + A lim un = B Dãy số un khơng có giới hạn n → +∞ D lim un = C lim un = Câu 27 Z Trong cácα+1khẳng định sau, khẳng định sai? Z x A xα dx = + C, C số B 0dx = C, C số α+1 Z Z C dx = ln |x| + C, C số D dx = x + C, C số x Trang 2/10 Mã đề Câu 28 Thể tích khối chóp có diện tích đáy S chiều cao h 1 A V = S h B V = S h C V = 3S h D V = S h Câu 29 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a B a D a A C Câu 30 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 2a, tam giác S AB đều, H trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể √ tích khối chóp S ABCD là√ a3 4a3 2a3 a3 A B C D 3 Câu 31 Tổng diện tích mặt khối lập phương 54cm2 Thể tích khối lập phương là: A 27cm3 B 46cm3 C 64cm3 D 72cm3 Câu 32 [2] Tổng nghiệm phương trình log4 (3.2 x − 1) = x − A B C D Câu 33 Hình hình sau khơng khối đa diện? A Hình lăng trụ B Hình chóp C Hình lập phương D Hình tam giác Câu 34 Nếu hình chóp có chiều cao cạnh đáy tăng lên n lần thể tích tăng lên? A 2n3 lần B n3 lần C 2n2 lần D n3 lần Câu 35 [2-c] Giá trị lớn hàm số y = x(2 − ln x) đoạn [2; 3] A − ln B C −2 + ln D e Câu 36 Phần thực phần ảo số phức z = −i + A Phần thực −1, phần ảo B Phần thực 4, phần ảo −1 C Phần thực 4, phần ảo D Phần thực −1, phần ảo −4 Câu 37 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai B Chỉ có (I) C Cả hai sai Câu 38 Hàm số f có nguyên hàm K A f (x) có giá trị lớn K C f (x) liên tục K B f (x) có giá trị nhỏ K D f (x) xác định K D Chỉ có (II) Câu 39 Trong không gian, cho tam giác ABC có đỉnh B, C thuộc trục Ox Gọi E(6; 4; 0), F(1; 2; 0) hình chiếu B, C lên cạnh AC, AB Tọa độ hình chiếu ! ! A lên BC ! ; 0; B (2; 0; 0) C ; 0; D ; 0; A 3 tan x + m Câu 40 [2D1-3] Tìm giá trị thực tham số m để hàm số y = nghịch biến khoảng m tan x + π 0; A (−∞; 0] ∪ (1; +∞) B [0; +∞) C (−∞; −1) ∪ (1; +∞) D (1; +∞) Câu 41 [1] Tập nghiệm phương trình log2 (x2 − 6x + 7) = log2 (x − 3) A {5; 2} B {2} C {3} D {5} Trang 3/10 Mã đề x−1 y z+1 = = −1 mặt phẳng (P) : 2x − y + 2z − = Viết phương trình mặt phẳng (Q) chứa ∆ tạo với (P) góc nhỏ A 2x − y + 2z − = B −x + 6y + 4z + = C 2x + y − z = D 10x − 7y + 13z + = Câu 42 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình d = 60◦ Đường chéo Câu 43 Cho lăng trụ đứng ABC.A0 B0C có đáy tam giác vng A, AC = a, ACB 0 0 ◦ BC mặt bên (BCC B ) tạo với mặt phẳng (AA C C) góc 30 Thể tích khối lăng trụ ABC.A0 B0C √ √ √ √ a3 4a3 2a3 B a D A C 3 Câu 44 [1] Cho a số thực dương tùy ý khác Mệnh đề đúng? 1 A log2 a = − loga B log2 a = C log2 a = loga D log2 a = log2 a loga Câu 45 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Câu 46 Thập nhị diện (12 mặt đều) thuộc loại A {3; 3} B {4; 3} C {5; 3} D {3; 4} √ Câu 47 Xác định phần ảo số √ √ phức z = ( + 3i) A B C −7 D −6 Câu 48 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a S A ⊥ (ABCD) Mặt bên (S CD) hợp với √ đáy góc 60◦ Thể tích khối √ chóp S ABCD √ 3 √ a 2a a A B C D a3 3 Câu 49 [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 1% năm Biết khơng rút tiền khỏi ngân hàng sau tháng, số tiền lãi nhập vào vốn ban đầu để tính lãi cho tháng Hỏi sau năm người thu (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định thời gian lãi suất không đổi người khơng rút tiền ra? A 13 năm B 12 năm C 11 năm D 10 năm Câu 50 [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% năm Ông muốn hoàn nợ ngân hàng theo cách: Sau tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp cách tháng, số tiền hoàn nợ lần trả hết tiền nợ sau tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng lần hoàn nợ bao nhiêu? Biết lãi suất ngân hàng không đổi thời gian ông A hoàn nợ 100.1, 03 100.(1, 01)3 triệu B m = triệu A m = 3 (1, 01)3 120.(1, 12)3 C m = triệu D m = triệu (1, 01)3 − (1, 12)3 − Câu 51 Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) đường thẳng x+1 y−5 z = = Tìm véctơ phương ~u đường thẳng ∆ qua M, vng góc với đường thẳng d: 2 −1 d đồng thời cách A khoảng bé A ~u = (3; 4; −4) B ~u = (1; 0; 2) C ~u = (2; 1; 6) D ~u = (2; 2; −1) Câu 52 Tứ diện có mặt phẳng đối xứng? A mặt B mặt C mặt D 10 mặt Trang 4/10 Mã đề ! 3n + 2 Câu 53 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D Câu 54 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z D Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Câu 55 [3-1213h] Hình hộp chữ nhật khơng có nắp tích 3200 cm3 , tỷ số chiều cao chiều rộng Khi tổng mặt hình nhỏ nhất, tính diện tích mặt đáy hình hộp A 160 cm2 B 1200 cm2 C 120 cm2 D 160 cm2 Câu 56 Vận tốc chuyển động máy bay v(t) = 6t2 + 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ đến giây thứ 15 bao nhiêu? A 2400 m B 6510 m C 1202 m D 1134 m Câu 57 Bát diện thuộc loại A {3; 3} B {4; 3} C {3; 4} D {5; 3} Câu 58 [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn tháng, lãi suất 2% quý Sau tháng, người gửi thêm 100 triệu đồng với kỳ hạn lãi suất trước Tổng số tiền người nhận sau năm gửi tiền vào ngân hàng gần kết sau đây? Biết suốt thời gian gửi tiền lãi suất ngân hàng khơng thay đổi người khơng rút tiền A 216 triệu B 220 triệu C 212 triệu D 210 triệu Câu 59 [1] Tập xác định hàm số y = x−1 A D = R B D = (0; +∞) C D = R \ {1} D D = R \ {0} Câu 60 Trong khẳng định sau, khẳng định sai?√ A F(x) = x nguyên hàm hàm số f (x) = x B Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số C Cả ba đáp án D F(x) = x2 nguyên hàm hàm số f (x) = 2x Câu 61 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B C D a 6 Câu 62 [2-c] Cho a = log27 5, b = log8 7, c = log2 Khi log12 35 3b + 2ac 3b + 3ac 3b + 3ac 3b + 2ac A B C D c+3 c+1 c+2 c+2 √ Câu 63 Cho khối chóp tam giác S ABC có cạnh đáy a Góc cạnh bên mặt phẳng đáy 300 Thể theo a √ tích khối chóp S ABC3 √ √ √ a a a3 a3 A B C D 18 6 36 Câu 64 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = − x2 y = x 11 A B C D 2 Trang 5/10 Mã đề Câu 65 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A B a C D 2 Câu 66 Khối đa diện có số đỉnh, cạnh, mặt nhất? A Khối bát diện B Khối lập phương C Khối lăng trụ tam giác D Khối tứ diện √ Câu 67 Cho chóp S ABCD có đáy ABCD hình vng cạnh a Biết S A ⊥ (ABCD) S A = a Thể tích khối chóp S ABCD √ √ √ a3 a3 a3 A a B C D 12 x=t Câu 68 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : y = −1 hai mặt phẳng (P), (Q) z = −t có phương trình x + 2y + 2z + = 0, x + 2y + 2z + = Viết phương trình mặt cầu (S ) có tâm I thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) (Q) 9 B (x − 3)2 + (y − 1)2 + (z − 3)2 = A (x + 3)2 + (y + 1)2 + (z − 3)2 = 4 9 2 2 2 C (x − 3) + (y + 1) + (z + 3) = D (x + 3) + (y + 1) + (z + 3) = 4 Câu 69 Cho a số thực dương α, β số thực Mệnh đề sau sai? α aα A β = a β B aαβ = (aα )β C aα bα = (ab)α D aα+β = aα aβ a Câu 70 [1] Phương trình log2 4x − log 2x = có nghiệm? A nghiệm B nghiệm C nghiệm D Vô nghiệm Câu 71 Khối đa diện loại {4; 3} có số mặt A 10 B D C 12 Câu 72 Tính √ mô đun số phức z√4biết (1 + 2i)z = + 4i A |z| = B |z| = C |z| = D |z| = √ Trong khẳng định sau đây, khẳng định đúng? x+1 y B xy = e − C xy0 = ey + D xy0 = −ey − Câu 73 [3-12217d] Cho hàm số y = ln A xy0 = −ey + Câu 74 Giá trị cực đại hàm số y = x3 − 3x + A B −1 C D Câu 75 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab A √ B √ C D √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 76 Giá trị lim(2x2 − 3x + 1) A +∞ x→1 B C D √ Câu 77 [2] Thiết diện qua trục hình nón trịn xoay tam giác có diện tích a2 Thể tích khối nón √ cho √ √ √ πa3 πa3 πa3 πa3 A V = B V = C V = D V = 6 Trang 6/10 Mã đề [ = 60◦ , S O Câu 78 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ √ với mặt đáy S O = a √ Khoảng cách từ O đến (S BC) √ 2a 57 a 57 a 57 D A B C a 57 19 17 19 Câu 79 Khối đa diện loại {5; 3} có số mặt A B 20 C 12 D 30 √ √ 4n2 + − n + Câu 80 Tính lim 2n − 3 C +∞ D A B Câu 81 Cho hình chóp S ABC có đáy ABC tam giác cạnh a, biết S A ⊥ (ABC) (S BC) hợp với đáy (ABC) góc 60◦ Thể√tích khối chóp S ABC √ √ a3 a3 a3 a3 A B C D 12 x+2 Câu 82 Có giá trị nguyên tham số m để hàm số y = đồng biến khoảng x + 5m (−∞; −10)? A Vô số B C D Câu 83 Tìm m để hàm số y = x4 − 2(m + 1)x2 − có cực trị A m > B m > −1 C m ≥ D m > Câu 84 [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = z1 thỏa mãn |z1 − − i| = Diện tích hình phẳng giới hạn hai quỹ tích biểu diễn hai số phức z z1 gần giá trị nhất? A 0, B 0, C 0, D 0, ! 1 + + ··· + Câu 85 Tính lim 1.2 2.3 n(n + 1) A B C D Câu 86 Tìm giá trị lớn chất hàm số y = x3 − 2x2 − 4x + đoạn [1; 3] 67 A −7 B −2 C −4 D 27 x2 − 5x + Câu 87 Tính giới hạn lim x→2 x−2 A −1 B C D Câu 88 Cho khối chóp S ABC √ có đáy ABC tam giác cạnh a Hai mặt bên (S AB) (S AC) vuông góc Thể tích khối chóp S ABC √là √ với đáy S C = a 3.3 √ √ a a 2a3 a3 A B C D 12 Câu 89 [1-c] Giá trị biểu thức log0,1 102,4 A 0, B 72 C −7, D 7, Câu 90 Khối đa diện loại {5; 3} có số đỉnh A B 20 C 12 D 30 √ Câu 91 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 64 B Vô số C 62 D 63 x+1 Câu 92 Tính lim x→+∞ 4x + 1 A B C D Trang 7/10 Mã đề Câu 93 [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m > B m < C m ≥ D m ≤ q Câu 94 [3-12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [−1; 0] B m ∈ [0; 4] C m ∈ [0; 1] D m ∈ [0; 2] Câu 95 [2] Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2 + 1)2 x [0; 1] √ C m = ±3 D m = ± A m = ±1 B m = ± Câu 96 Khối đa diện thuộc loại {3; 4} có đỉnh, cạnh, mặt? A đỉnh, 12 cạnh, mặt B đỉnh, 12 cạnh, mặt C đỉnh, 12 cạnh, mặt D đỉnh, 12 cạnh, mặt Câu 97 Dãy số sau có giới hạn 0? − 2n n2 + n + A un = B un = 5n + n2 (n + 1)2 n2 − 3n C un = n2 n2 − D un = 5n − 3n2 Câu 98 Mặt phẳng (AB0C ) chia khối lăng trụ ABC.A0 B0C thành khối đa diện nào? A Một khối chóp tam giác, khối chóp tứ giác B Hai khối chóp tam giác C Hai khối chóp tứ giác D Một khối chóp tam giác, khối chóp ngữ giác Câu 99 Khối đa diện loại {3; 3} có tên gọi gì? A Khối 12 mặt B Khối bát diện C Khối lập phương D Khối tứ diện Câu 100 Cho hình √ chóp S ABCD có đáy ABCD hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD),√S D = a Thể tích khối chóp S ABCD √ √ 3 √ a3 15 a a A B a3 C D 3 Câu 101 Hình hộp chữ nhật có ba kích thước khác có mặt phẳng đối xứng? A mặt B mặt C mặt D mặt Câu 102 Cho hình chữ nhật ABCD, cạnh AB = 4, AD = Gọi M, N trung điểm cạnh AB CD Cho hình chữ nhật quay quanh MN ta hình trụ trịn xoay tích A 8π B V = 4π C 16π D 32π d = 300 Câu 103 Cho khối lăng trụ đứng ABC.A0 B0C có đáy ABC tam giác vng A BC = 2a, ABC Độ dài cạnh bên CC = 3a Thể tích V √ khối lăng trụ cho.3 √ √ 3a a A V = 3a3 B V = C V = D V = 6a3 2 Câu 104 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 13 B log2 2020 C 2020 D log2 13 d = 30◦ , biết S BC tam giác Câu 105 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vuông √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 B C D A 13 26 16 Z x a a Câu 106 Cho I = dx = + b ln + c ln d, biết a, b, c, d ∈ Z phân số tối giản Giá √ d d 4+2 x+1 trị P = a + b + c + d bằng? A P = 28 B P = −2 C P = D P = 16 Trang 8/10 Mã đề Câu 107 [1] Đạo hàm làm số y = log x ln 10 A y0 = B y0 = x x C y0 = x ln 10 D 10 ln x Câu 108 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có f (x) = F(x) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) Câu 109 Điểm cực đại đồ thị hàm số y = 2x3 − 3x2 − A (−1; −7) B (1; −3) C (0; −2) D (2; 2) x − 2x2 + 3x − C (−∞; 3) D (−∞; 1) (3; +∞) Câu 110 Tìm tất khoảng đồng biến hàm số y = A (1; +∞) B (1; 3) Câu 111 Cho hình chóp S ABCD có√đáy ABCD hình chữ nhật AD = 2a, AB = a Gọi H trung điểm AD, biết S H ⊥ (ABCD), S A =√a Thể tích khối chóp S ABCD √ 2a3 4a3 4a3 2a3 B C D A 3 3 Câu 112 Phép đối xứng qua mp(P) biến đường thẳng d thành A d song song với (P) B d nằm P d ⊥ P C d nằm P D d ⊥ P Câu 113 Phần thực phần ảo số phức z = −3 + 4i A Phần thực −3, phần ảo −4 B Phần thực −3, phần ảo C Phần thực 3, phần ảo −4 D Phần thực 3, phần ảo Câu 114 Cho hình chóp S ABCD có cạnh đáy 2a Mặt bên hình chóp tạo với đáy góc 60◦ Mặt phẳng (P) chứa cạnh AB qua trọng tâm G tam giác S AC cắt S C, S D M, n Thể tích khối √ chóp S ABMN √ √ √ 2a3 5a 4a3 a3 A B C D 3 x−1 Câu 115 [3-1214d] Cho hàm số y = có đồ thị (C) Gọi I giao điểm hai tiệm cận (C) Xét x+2 tam giác B thuộc (C), đoạn thẳng AB có độ dài √ ABI có hai đỉnh A, √ √ A B C D 2 Câu 116 Một máy bay hạ cánh sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần với vận tốc v(t) = − t + 69(m/s), t khoảng thời gian tính giây Hỏi giây cuối trước dừng hẳn, máy bay di chuyển mét? A 1587 m B 27 m C 387 m D 25 m x = + 3t Câu 117 [1232h] Trong không gian Oxyz, cho đường thẳng d : y = + 4t Gọi ∆ đường thẳng z = qua điểm A(1; 1; 1) có véctơ phương ~u = (1; −2; 2) Đường phân giác góc nhọn tạo d ∆ có phương trình x = + 3t x = −1 + 2t x = + 7t x = −1 + 2t A C y = −10 + 11t B y = + 4t y = −10 + 11t D y=1+t z = −6 − 5t z = − 5t z = − 5t z = + 5t Trang 9/10 Mã đề 1 Z xe2x dx = ae2 + b, a, b số hữu tỷ Tính a + b Câu 118 Cho 1 A B C D Câu 119 [2-c] Gọi M, m giá trị lớn giá trị nhỏ hàm số y = x + ln x đoạn [1; e] Giá trị T = M + m 2 A T = + B T = e + C T = e + D T = e + e e 2x + Câu 120 Tính giới hạn lim x→+∞ x + 1 A B C −1 D Câu 121 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ a b2 + c2 abc b2 + c2 b a2 + c2 c a2 + b2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 log7 16 Câu 122 [1-c] Giá trị biểu thức 15 log7 15 − log7 30 A B −2 C −4 D Câu 123 Hàm số y = x3 − 3x2 + 3x − có cực trị? A B C D Câu 124 [1233d-2] MệnhZđề sau Z Z sai? [ f (x) + g(x)]dx = A Z B Z C Z D f (x)dx + Z g(x)dx, với f (x), g(x) liên tục R Z [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R f (x)dx = f (x) + C, với f (x) có đạo hàm R log2 240 log2 15 − + log2 log3,75 log60 B C Câu 125 [1-c] Giá trị biểu thức A Câu 126 [2] Tổng nghiệm phương trình 6.4 x − 13.6 x + 6.9 x = A B C D −8 D Câu 127 Cho hàm số y = x − 3x − Mệnh đề sau đúng? A Hàm số nghịch biến khoảng (1; +∞) B Hàm số đồng biến khoảng (1; 2) C Hàm số nghịch biến khoảng (−∞; 0) D Hàm số nghịch biến khoảng (0; 1) Câu 128 [4-1242d] Trong tất số phức z thỏa mãn |z − + 2i| = |z + − 4i| Tìm giá trị nhỏ môđun z √ √ √ √ 13 A 13 B 26 C D 13 Câu 129 √ Cho số phức z thỏa mãn |z + 3| = |z − 2i| = |z − − 2i| Tính |z| √ A |z| = 10 B |z| = 10 C |z| = 17 D |z| = 17 !x 1−x Câu 130 [2] Tổng nghiệm phương trình = + A log2 B − log2 C − log3 D − log2 - - - - - - - - - - HẾT- - - - - - - - - Trang 10/10 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D A D B B D 10 A 11 A 13 B A C 12 A B 14 A 15 D 16 17 D 18 C 19 D 20 C 21 A 22 C 23 A 24 C 26 C 25 B D 27 A 28 B 29 A 30 B 31 A 32 C 33 D 34 B 35 D 36 B 37 D 38 39 D 40 D 41 D 42 D D 43 B 44 45 B 46 47 B 48 A 49 B 50 51 B 52 53 D 54 A 55 D 56 57 C C C C B B 58 59 A 60 A 61 A 62 63 A 64 65 B 66 67 B 68 C C B D C 69 A 70 A D 71 73 72 B 76 77 C 78 A 79 C 80 81 C 82 B C 85 87 A D D C 84 B 86 B 88 A 89 C 90 91 C 92 93 C 94 A 95 D B D 96 A 97 A 98 A 99 101 C 74 75 A 83 B D 100 B 103 104 D 106 D B 105 A C 107 C 108 D 109 C 110 D 111 C 112 B 114 116 D B 118 A 120 B 113 B 115 B 117 C 119 C 121 A 122 C 123 A 124 C 125 D 126 C 127 D 128 130 D 129 A B