LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Nguyên hàm F(x) của hàm số f (x) = 2x2 + x3 − 4 thỏa mãn điều kiện F(0) = 0 là A[.]
LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Nguyên hàm F(x) hàm số f (x) = 2x2 + x3 − thỏa mãn điều kiện F(0) = x4 x4 − 4x + C x3 − x4 + 2x D x3 + − 4x A 2x3 − 4x4 B x3 + 4 Câu Tính diện tích hình phẳng giới hạn đồ thị (C) hàm số y = x2 − 4x + 5, tiếp tuyến A(1; 2) tiếp tuyến B(4; 5) đồ thị (C) A B C D 4 4 1 Câu Tìm tất giá trị tham số m để đồ thị hàm số y = x − (m − 2)x2 + (m − 2)x + m2 có 3 hai điểm cực trị nằm phía bên phải trục tung? A m > B m > m < C m > D m < Câu Cường độ trận động đất M (richter) cho công thức M = log A − log A0 , với A biên độ rung chấn tối đa A0 biên độ chuẩn (hằng số) Đầu kỷ 20, trận động đất San Francisco có cường độ 8,3 độ Richter Trong năm đó, trận động đất khác Nam Mỹ có biên độ mạnh gấp lần Cường độ trận động đất Nam Mỹ có kết gần bằng: A 8,9 B 2,075 C 33,2 D 11 Câu Cho hình chóp S.ABC có đáy ABC tam giác vuông cân với BA = BC = a, S A = a vng góc với √ góc hai mặt phẳng (SAC) (SBC) bằng? √ √ mặt phẳng đáy Tính cơsin 2 A B C D 2 m 3 Câu Xác định tập tất giá trị tham số m để phương trình 2x + x − 3x − = − có 2 nghiệm phân biệt 19 19 A S = (−2; − ) ∪ ( ; 6) B S = (−2; − ) ∪ ( ; 7) 4 4 19 C S = (−3; −1) ∪ (1; 2) D S = (−5; − ) ∪ ( ; 6) 4 Câu Tứ diện OABC có OA = OB = OC = a đơi vng góc Gọi M, N, P trung điểm AB, BC, CA Thể tích tứ diện OMNP a3 a3 a3 a3 A B C D 24 12 4 R R R Câu Cho f (x)dx = 10 f (x)dx = Tính f (x)dx −1 A B 18 −1 C D −2 Câu Cần chọn người công tác từ tổ có 30 người, số cách chọn A C30 B 10 C A330 D 330 Câu 10 Trong không gian Oxyz, cho mặt cầu (S ) : (x + 1)2 + (y − 3)2 + (z + 2)2 = Mặt phẳng (P) tiếp xúc với mặt cầu (S ) điểm A(−2; 1; −4) có phương trình là: A x + 2y + 2z + = B −x + 2y + 2z + = C x − 2y − 2z − = D 3x − 4y + 6z + 34 = Câu 11 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(3; 2; 1), B(1; −1; 2), C(1; 2; −1) Tìm −−→ −−→ −−→ tọa độ điểm M thỏa mãn OM = 2AB − AC A M(5; 5; 0) B M(−2; 6; −4) C M(2; −6; 4) D M(−2; −6; 4) Trang 1/5 Mã đề 001 Câu 12 Cho hàm số y = f (x) xác định liên tục đoạn có [−2; 2] có đồ thị đường cong hình vẽ bên Điểm cực tiểu đồ thị hàm số y = f (x) A M(−2; −4) B x = −2 C M(1; −2) D x = Câu 13 Tập nghiệm bất phương trình log3 (36 − x2 ) ≥ A [−3; 3] B (−∞; −3] ∪ [3; +∞) C (−∞; 3] D (0; 3] Câu 14 Số phức z = − 2i có điểm biểu diễn mặt phẳng tọa độ M Tìm tọa độ điểm M A M(5; −2) B M(−5; −2) C M(5; 2) D M(−2; 5) −a = (4; −6; 2) Phương Câu 15 Cho đường thẳng ∆ qua điểm M(2; 0; −1) có véctơ phương → trình tham số đường thẳng ∆ A x = −2 + 4ty = −6tz = + 2t B x = −2 + 2ty = −3tz = + t C x = + 2ty = −3tz = + t D x = + 2ty = −3tz = −1 + t Câu 16 Cho hàm số y = f (x) có đạo hàm f ′ (x) = x2 − 2x, ∀x ∈ R Hàm số y = −2 f (x) đồng biến khoảng A (−∞; −2) B (−2; 0) C (2; +∞) D (0; 2) Câu 17 Với a số thực dương tùy ý, ln(3a) − ln(2a) B ln 6a2 C ln 32 A ln 23 D ln a Câu 18 Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n2 = (1; −1; 1) B → n3 = (1; 1; 1) C → n4 = (1; 1; −1) D → n1 = (−1; 1; 1) Câu 19 Cho số phức z = + 9i, phần thực số phức z2 A B 85 C −77 D 36 Câu 20 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trình là: Câu 21 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) B 43 C 25 D 14 A 12 i R2 R2h Câu 22 Nếu f (x)dx = 12 f (x) − dx A −2 B C D Câu 23 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: A y′ = πxπ−1 B y′ = xπ−1 C y′ = πxπ D y′ = π1 xπ−1 Câu 24 Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC tam giác vuông cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) 36 a, thể tích khối lăng trụ cho √ √ √ √ C 22 a3 D 42 a3 A 2a3 B 62 a3 Câu 25 Xét số phức z thỏa mãn z2 − − 4i = 2|z| Gọi M m giá trị lớn giá trị nhỏ của√ |z| Giá trị M + m2 A 18 + B 28 √ C 11 + D 14 Câu 26 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (−2; −4; −6) B (1; 2; 3) C (2; 4; 6) D (−1; −2; −3) Câu 27 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: ln3 A y′ = − B y′ = C y′ = xln3 x x ax + b Câu 28 Cho hàm số y = có đồ thị đường cong hình bên cx + d Tọa độ giao điểm đồ thị hàm số cho trục hoành A (0; −2) B (−2; 0) C (2; 0) D y′ = xln3 D (0; 2) Trang 2/5 Mã đề 001 Câu 29 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (1; 3) B (0; 2) C (−∞; 1) D (3; +∞) 2x + Câu 30 Tiệm cận ngang đồ thị hàm số y = đường thẳng có phương trình: 3x − 1 2 B y = C y = − D y = − A y = 3 3 Câu 31 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Có giá trị ngun tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt? A B C D Câu 32 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (−6; 7) B (7; −6) C (7; 6) D (6; 7) Câu 33 Cho hình chóp S ABC có đáy tam giác vng B, S A vng góc với đáy S A = AB (tham khảo hình bên) Góc hai mặt phẳng (S BC) (ABC) A 45◦ B 30◦ C 90◦ D 60◦ Câu 34 Trong hình đây, có hình đa diện? Hình Hình Hình A B C D 2x − Trong khẳng định sau, khẳng định đúng? Câu 35 Cho hàm số y = −x + A Hàm số đồng biến khoảng (−2; 2) B Hàm số đồng biến khoảng (2; +∞) C Hàm số đồng biến tập xác định D Hàm số đồng biến khoảng (−2; +∞) Câu 36 Cho hàm số y = f (x) liên tục R có đạo hàm f ′ (x) = x(x + 1) Hàm số y = f (x) đồng biến khoảng khoảng đây? A (−1; 0) B (0; +∞) C (−∞; 0) D (−1; +∞) Câu 37 Khối đa diện khối đa diện sau có tính chất: “Mỗi mặt khối đa diện tam giác đỉnh đỉnh chung ba mặt ”? A Khối mười hai mặt B Khối lập phương C Khối bát diện D Khối tứ diện Câu 38 Cho hình lăng trụ đứng ABC.A′ B′C ′ có AA′ = 3a, tam giác ABC vng cân A BC = 2a Tính thể tích V khối lăng trụ ABC.A′ B′C ′ A V = 3a3 B V = a3 C V = 6a3 D V = 12a3 Câu 39 Bảng biến thiên hình hàm số hàm số sau? x −∞ +∞ + y′ + +∞ y −∞ Trang 3/5 Mã đề 001 A y = 2x − x+1 B y = 2x + x−1 C y = 2x − x−1 D y = 2x + x−1 Câu 40 Hình đa diện có cạnh? A 15 B 18 C 21 D 12 Câu 41 Hàm số hàm số nghịch biến R? A y = −x3 − 2x + B y = x4 − 2x2 + C y = −x2 + 3x + Câu 42 Điểm cực đại đồ thị hàm số y = x4 − 2x2 + A (0; 3) B x = C x = D y = x−3 5−x D (1; 2) Câu 43 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRh + πR2 B S = πRl + πR2 C S = πRl + 2πR2 D S = 2πRl + 2πR2 Câu 44 Biết a, b ∈ Z cho A R B (x + 1)e2x dx = ( ax + b 2x )e + C Khi giá trị a + b là: C D −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 45 Trong không gian với hệ trục tọa độ Oxyz, cho → → − → − véc tơ u + v −u + 3→ −v = (3; 14; 16) −u + 3→ −v = (1; 13; 16) A 2→ B 2→ −u + 3→ −v = (1; 14; 15) −u + 3→ −v = (2; 14; 14) C 2→ D 2→ d Câu 46 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm √ cạnh BC, S A = S C = S M = a Tính khoảng √ cách từ S đến mặt phẳng (ABC) A a B 2a C a D a Câu 47 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y + 2)2 + (z − 4)2 = Câu 48 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A 2x + y − 4z + = B −2x − y + 4z − = C 2x + y − 4z + = D 2x + y − 4z + = Câu 49 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 50 Chọn mệnh đề mệnh đề sau: A Nếu a > a x > ay ⇔ x < y B Nếu a > a x = ay ⇔ x = y C Nếu a < a x > ay ⇔ x < y D Nếu a > a x > ay ⇔ x > y Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001