1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề kiểm tra thpt môn toán (736)

4 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 124,64 KB

Nội dung

Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Biết ∫ f (u)du = F(u) +C Mệnh đề nào dưới đây đúng? A ∫ f (2x − 1)dx = 2[.]

Kiểm tra LATEX ĐỀ KIỂM TRA THPT MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Biết f (u)du = F(u) + C Mệnh đề đúng? R R A f (2x − 1)dx = 2F(x) − + C B f (2x − 1)dx = F(2x − 1) + C R R D f (2x − 1)dx = 2F(2x − 1) + C C f (2x − 1)dx = F(2x − 1) + C R Câu Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 A B − C D 6 Câu Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(3; 7; 4) B C(1; 5; 3) C C(−3; 1; 1) D C(5; 9; 5) Câu Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) A (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = B (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 3 C (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = D (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = √ Câu Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường √ thẳng BB′ AC ′ √ √ √ a a a A C B a D 2 Câu Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện√tích lớn bằng? √ √ 3 3 (m ) B 3(m2 ) (m ) D (m2 ) A C R5 dx Câu Biết = ln T Giá trị T là: 2x − √ A T = 81 B T = C T = D T = √ d = 1200 Gọi K, Câu Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC I (A1 BK) √ trung điểm cạnh√CC1 , BB1 Tính khoảng cách từ điểm I đến mặt phẳng √ √ a a a 15 A B C a 15 D Câu Đường cong hình bên đồ thị hàm số bốn hàm số liệt kê bốn phương án Hỏi hàm số hàm số nào? A B C D Câu 10 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y + 3z − = Một véc tơ pháp tuyến (P) −n = (1; −2; 3) −n = (1; 3; −2) −n = (1; −2; −1) −n = (1; 2; 3) A → B → C → D → Câu 11 Cho hàm số y = f (x) có bảng biến thiên sau Hàm số y = f (x) nghịch biến khoảng khoảng đây? A (−2 ; 0) B (−∞ ; −2) C (−1 ; 4) D (0 ; +∞) Trang 1/4 Mã đề 001 Câu 12 Cho hàm số y = f (x) hàm số bậc có đồ thị hình vẽ Giá trị cực tiểu hàm số cho A −2 B C −1 D Câu 13 Cho hình chóp S ABCD có cạnh đáy a Tính khoảng cách từ điểm A đến mặt phẳng (S BD)√theo a √ a a B a C 2a D A 2 Câu 14 Cho đa giac đêu 12 đinh Chon ngâu nhiên đinh 12 đinh cua đa giac Xac suât đê 3đinh đươc chon tao tam giac đêu la 1 1 A P = B P = C P = D P = 14 220 55 Câu 15 Cân phân công ban tư môt tô 10 ban đê lam trưc nhât Hoi co cach phân công khac A C10 B A310 C 310 D 103 Câu 16 Có số nguyên ysao cho ứng với số nguyên ycó tối đa 100 số nguyên xthỏa mãn 3y−2x ≥ log5 (x + y2 )? A 18 B 20 C 13 D 17 Câu 17 Biết phương trình z2 + mz − m + = có hai nghiệm số ảo Khi tham số thực m gần giá trị giá trị sau? A −1 B C D −4 Câu 18 Cho phương trình bậc hai az2 + bz + c = (với a, b, c ∈ R) Xét tập số phức, khẳng định sau, đâu khẳng định sai? c A Phương trình cho có tích hai nghiệm a −b B Phương trình cho có tổng hai nghiệm a C Nếu ∆ = b − 4ac < phương trình vơ nghiệm D Phương trình cho ln có nghiệm Câu 19 Căn bậc hai -4 tập số phức A 2i -2i B không tồn C -2 D 4i Câu 20 Biết z0 nghiệm phức có phần ảo dương phương trình z2 − 4z + 20 = Trên mặt phẳng tọa độ, điểm điểm biểu diễn số phức w = (1 + i)z0 − 2z0 ? A M3 (−2; 10) B M2 (2; −10) C M4 (6; −14) D M1 (6; 14) Câu 21 Gọi M, N hai điểm biểu diễn số phức nghiệm phương trình z2 − 4z + 29 = Độ dài MN bao nhiêu? √ √ C MN = D MN = A MN = 10 B MN = 10 Câu 22 Biết x = nghiệm phương trình x2 + (m2 − 1)x − 8(m − 1) = (m tham số phức có phần ảo√âm) Khi đó, mơ-đun √ số phức w = m2 − 3m +√i ? A |w| = 73 B |w| = C |w| = D |w| = Câu 23 Biết z nghiệm phức có phần ảo dương phương trình z2 − 4z + 13 = Khi mô-đun số phức w =√z2 + 2z bao nhiêu?√ √ A |w| = 13 B |w| = 13 C |w| = 37 D |w| = Câu 24 Kí hiệu z1 , z2 , z3 z4 bốn nghiệm phức phương trình z4 − z2 − 12 = Tính tổng T = |z1 | + |z2 | +√|z3 | + |z4 | √ √ A T = + B T = C T = D T = + Câu 25 Biết z0 nghiệm phức có phần ảo âm phương trình z2 − (3 − 2i)z + − i = Khi tổng phần thực phần ảo z0 A B -1 C D -3 Trang 2/4 Mã đề 001 Câu 26 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) A B C D R2 R2 Câu 27 Nếu f (x) = [ f (x) − 2] A B −2 C D Câu 28 Tập nghiệm bất phương trình log(x − 2) > A (3; +∞) B (12; +∞) C (−∞; 3) D (2; 3) Câu 29 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d > R B d < R C d = R D d = Câu 30 Tích tất nghiệm phương trình ln2 x + 2lnx − = 1 A B C −3 D −2 Câu 31 Đồ thị hàm số có dạng đường cong hình bên? x−3 D y = x3 − 3x − A y = x4 − 3x2 + B y = x2 − 4x + C y = x−1 Câu 32 Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho A πrl2 B πr2 l C 2πrl D πrl 3 Câu 33 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (7; 6) B (7; −6) C (6; 7) D (−6; 7) Câu 34 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ B C 15 D A 10 Câu 35 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng?  2  2 C P = (|z| − 2)2 D P = (|z| − 4)2 B P = |z|2 − A P = |z|2 − Câu 36 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − 3√là hai nghiệm phức phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ 97 85 A T = B T = 13 C T = D T = 13 3 Câu 37 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | = Câu 38 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z1 √ z2 √ B A C D √ 2 Câu 39 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D √ 2 Mệnh đề Câu 40 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = đúng? Trang 3/4 Mã đề 001 A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = √ D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 √ 2 C |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = Câu 41 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn của√biểu thức P = |z1 | + |z2 | √ √ √ B P = 34 + C P = D P = 26 A P = + z Câu 42 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| thức bằng? + |z|2 √ 1 A B C D R Câu 43 6x dxbằng A 6x6 + C B x6 + C C 30x4 + C D x6 + C Câu 44 Tìm tất giá trị thực tham số mđể hàm số y = (m + 1)x4 − mx2 + có cực tiểu mà khơng có cực đại A −1 ≤ m < B m > C m < −1 D −1 ≤ m ≤ 2 Câu 45 Trong không gian Oxyz, cho mặt cầu (S ) : (x + 1)2 + (y − 3)2 + (z + 2)2 = Mặt phẳng (P) tiếp xúc với mặt cầu (S ) điểm A(−2; 1; −4) có phương trình là: A 3x − 4y + 6z + 34 = B x + 2y + 2z + = C −x + 2y + 2z + = D x − 2y − 2z − = x+1 (C) có đường tiệm cận Câu 46 Đồ thị hàm số y = x−2 A y = x = −1 B y = x = C y = −1 x = D y = x = Câu 47 Cho hàm số y = f (x) xác định liên tục đoạn có [−2; 2] có đồ thị đường cong hình vẽ bên Điểm cực tiểu đồ thị hàm số y = f (x) A x = −2 B M(−2; −4) C x = D M(1; −2) Câu 48 Một hộp chứa sáu cầu trắng bốn cầu đen Lấy ngẫu nhiên đồng thời bốn Tính xác suất cho có màu trắng 209 A B C D 105 21 210 210 √ Câu 49 Cho hình chóp S.ABCD có đáy ABCD hình bình hành, cạnh AB = 2a, BC = 2a 2, OD = √ a Tam giác SAB nằm mặt phẳng vng góc với mặt phẳng đáy Gọi O giao điểm AC BD Tính khoảng cách d từ điểm O √ đến mặt phẳng (S AB) √ B d = a C d = a D d = 2a A d = a Câu 50 Cho hình phẳng (H) giới hạn đồ thị hàm số y = x2 đường thẳng y = mx với m , Hỏi có số nguyên dương m để diện tích hình phẳng (H) số nhỏ 20 A B C D - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001

Ngày đăng: 10/04/2023, 15:06

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN