1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề kiểm tra thpt môn toán (861)

4 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 124,69 KB

Nội dung

Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Tìm giá trị cực đại yCD của hàm số y = x3 − 12x + 20 A yCD = 36 B yCD =[.]

Kiểm tra LATEX ĐỀ KIỂM TRA THPT MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = 36 B yCD = 52 C yCD = D yCD = −2 Câu Gọi S (t) diện tích hình phẳng giới hạn đường y = t(t > 0) Tìm lim S (t) t→+∞ A ln + B ln − ; y = 0; x = 0; x = (x + 1)(x + 2)2 C − ln − D − ln 2 Câu Tập nghiệm bất phương trình log (x − 1) ≥ là: A (−∞; 2] B (1; 2] C [2; +∞) D (1; 2) Câu Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường tròn ngoại tam giác BCD √ có chiều cao chiều cao tứ diện √ tiếp √ √ 2π 2.a2 π 2.a π 3.a2 B C π 3.a A D 3 √ √ Câu Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vng cân B S A = a 6, S B = a Tính góc SC mặt phẳng (ABC) A 300 B 600 C 1200 D 450 Câu Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 4m2 − m2 − m2 − 12 m2 − 12 B C D A m 2m 2m 2m √ d = 1200 Gọi K, Câu Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC I (A1 BK) √ trung điểm cạnh√CC1 , BB1 Tính khoảng cách từ điểm I đến mặt phẳng √ √ a a 15 a A B C a 15 D 3 Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D ax + b Câu Cho hàm số y = có đồ thị đường cong hình vẽ bên Tọa độ giao điểm đồ thị cx + d hàm số cho trục hoành A (2 ; 0) B (0 ; 3) C (3; ) D (0 ; −2) Câu 10 Trong không gian Oxyz, cho mặt phẳng (P) : x − 3y + 5z − = Điểm thuộc mặt phẳng (P)? A M(0 ; ; 2) B N(1 ; ; 7) C Q(4 ; ; 2) D P(4 ; −1 ; 3) Câu 11 Cho hàm số f (x) liên tục R R2 ( f (x) + 2x) = Tính A −9 B −1 R2 f (x) C D Câu 12 Bất phương trình log2021 (x − 1) ≤ có nghiệm nguyên? A 2022 B C D Trang 1/4 Mã đề 001 Câu 13 Trên tập số phức, cho phương trình z2 + 2(m − 1)z + m + 2m = Có tham số m để phương trình cho có hai nghiệm phân biệt z1 ; z2 thõa mãn z1 + z2 = A B C D Câu 14 Tập nghiệm bất phương trình 52x+3 > −1 A R B ∅ C (−∞; −3) D (−3; +∞) Câu 15 Thiết diện qua trục hình nón tam giác cạnh có độ dài a Tính diện tích tồn phần S hình nón A S = πa2 B S = πa2 C S = πa2 D S = πa2 4 Câu 16 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) mặt phẳng (P) : 2x+2y−z+9 = Đường thẳng d qua A có vectơ phương ⃗u = (3; 4; −4) cắt (P) B Điểm M thay đổi (P) cho M ln nhìn đoạn AB góc 90o Khi độ dài MB lớn nhất, đường thẳng MB qua điểm điểm sau? A H(−2; −1; 3) B K(3; 0; 15) C J(−3; 2; 7) D I(−1; −2; 3) Câu 17 Tổng nghịch đảo nghiệm phương trình z4 −z3 −2z2 +6z−4 = tập số phức 1 3 B − C D A − 2 2 Câu 18 Tất bậc hai số phức z = 15 − 8i là: A − 2i −5 + 2i B − i + 3i C − i −4 + i D + i −4 + i Câu 19 Biết z = + 2i nghiệm phức phương trình z2 + (m − 1)z + m − = (m tham số phức) Khi phần ảo m bao nhiêu? 7 B − C − D A 4 4 Câu 20 Biết z số phức thỏa mãn z + 3z + = Khi mơ-đun số phức w = z + ? √ √ √ √ A |w| = B |w| = C |w| = 2 D |w| = Câu 21 Căn bậc hai -4 tập số phức A -2 B 2i -2i C 4i D không tồn Câu 22 Biết z0 nghiệm phức có phần ảo âm phương trình z2 − (3 − 2i)z + − i = Khi tổng phần thực phần ảo z0 A -1 B -3 C D Câu 23 Kí hiệu z1 , z2 , z3 z4 bốn nghiệm phức phương trình z4 − z2 − 12 = Tính tổng T = |z1 | + |z2 | +√|z3 | + |z4 | √ √ B T = + C T = D T = A T = + Câu 24 Biết x = nghiệm phương trình x2 + (m2 − 1)x − 8(m − 1) = (m tham số phức có phần ảo√âm) Khi đó, mơ-đun số phức w = m2 − 3m +√i ? √ A |w| = 73 B |w| = C |w| = D |w| = Câu 25 Biết z nghiệm phức có phần ảo dương phương trình z2 − 4z + 13 = Khi mơ-đun số phức w =√z2 + 2z bao nhiêu? √ √ A |w| = 13 B |w| = C |w| = 13 D |w| = 37 Câu 26 Cho số phức z = + 9i, phần thực số phức z2 A 36 B −77 C 85 D Câu 27 Phần ảo số phức z = − 3i A −3 B −2 D C Câu 28 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (1; 2) B (0; 1) C (1; 0) D (−1; 2) Trang 2/4 Mã đề 001 Câu 29 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = ( m tham số thực) Có bao nhiêu giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn z1 + z2 = 2? A B C D Câu 30 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 D A B C Câu 31 Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho A πr2 l B 2πrl C πrl D πrl2 3 Câu 32 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (6; 7) B (7; 6) C (7; −6) D (−6; 7) Câu 33 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A B C −1 D Câu 34 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng?  2  2 A P = |z|2 − B P = |z|2 − C P = (|z| − 4)2 D P = (|z| − 2)2 Câu 35 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ của√biểu thức T = |z + 1| + 2|z − 1| D P = −2016 A P = 2016 B P = C max T = Câu 36 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ A P = B P = C P = D P = 2 √ 2 Mệnh đề Câu 37 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = đúng? √ A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 √ 2 2 2 2 C |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = D |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = Câu 38 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − hai nghiệm phức √ phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ 97 85 A T = 13 B T = C T = D T = 13 3 Câu 39 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ B 10 C D A 15 Câu 40 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu !diễn số phức thuộc tập hợp sau đây? ! ! ! 9 A ; B ; C ; +∞ D 0; 4 4 Câu 41 Cho số phức z , thỏa mãn A |z| = B |z| = z+1 số ảo Tìm |z| ? z−1 C |z| = 1 D |z| = Trang 3/4 Mã đề 001 Câu 42 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z phức ω điểm nào? A điểm S B điểm P C điểm Q D điểm R R3 R3 R3 Câu 43 Biết f (x)dx = g(x)dx = Khi [ f (x) + g(x)]dx A 2 B Câu 44 Số phức z = − 3i có phần ảo A 3i B −3 C −2 D C D √ Câu √ 45 Cho hình chóp S.ABCD có đáy ABCD hình bình hành, cạnh AB = 2a, BC = 2a 2, OD = a Tam giác SAB nằm mặt phẳng vng góc với mặt phẳng đáy Gọi O giao điểm AC BD Tính khoảng cách d từ điểm O đến mặt phẳng (S AB) √ √ A d = a B d = a C d = a D d = 2a Câu 46 Cho số phức z = a + bi (a, b ∈ R) thỏa mãn z + + 3i − z i = Tính S = 2a + 3b A S = B S = −5 C S = D S = −6 Câu 47 Tìm tất giá trị thực tham số mđể hàm số y = (m + 1)x4 − mx2 + có cực tiểu mà khơng có cực đại A −1 ≤ m < B −1 ≤ m ≤ C m > D m < −1 Câu 48 Cho hình chóp S ABCD có đáy hình vng ABCD cạnh a, cạnh bên S A vng góc với mặt phẳng đáy Biết S A = 3a, tính thể tích V khối chóp S ABCD a3 C V = 3a3 D V = 2a3 A V = a3 B V = Câu 49 Cho lăng trụ đứng ABC.A′ B′C ′ có cạnh BC = 2a, góc hai mặt phẳng (ABC) (A′ BC)bằng 600 Biết diện√tích tam giác ∆A′ BC 2a2 Tính thể tích V khối lăng trụ ABC.A′ B′C ′ √ 2a3 a3 D V = A V = B V = 3a3 C V = a3 3 Câu 50 Hình chópS ABC có đáy tam giác vng B có AB = a, AC = 2a, S A vng góc với mặt phẳng√đáy, S A = 2a Gọi φ góc tạo hai mặt phẳng√(S AC), (S BC) Tính cos√ φ =? 15 A B C D 5 - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001

Ngày đăng: 10/04/2023, 15:01

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN