Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0;[.]
Kiểm tra LATEX ĐỀ KIỂM TRA THPT MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; 1; 2) B I(1; 1; 2) C I(0; 1; −2) D I(0; −1; 2) Câu Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối tròn xoay tạo thành quay (H) quanh trục Ox 32 32π 8π B V = C V = D V = A V = 3 5 Câu Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 B − ln − C ln + D ln − A − ln 2 2 √ x Câu Tìm nghiệm phương trình x = ( 3) A x = −1 B x = C x = D x = Câu Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện√tích lớn bằng? √ √ 3 3 A (m ) B (m2 ) C (m ) D 3(m2 ) √ Câu Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 D (0; ) A (0; 1) B (1; +∞) C ( ; +∞) 4 Câu Cho x, y, z ba số thực khác thỏa mãn x = 5y = 10−z Giá trị biểu thức A = xy + yz + zxbằng? A B C D √ Câu Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường √ thẳng BB′ AC ′ √ √ √ a a a B C D a A √ √ a Câu Cho hình chóp S ABCD có cạnh đáy a đường cao S H Tính góc mặt bên (S DC) mặt đáy A 90o B 60o C 45o D 30o Câu 10 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) mặt phẳng (P) : 2x+2y−z+9 = Đường thẳng d qua A có vectơ phương ⃗u = (3; 4; −4) cắt (P) B Điểm M thay đổi (P) cho M ln nhìn đoạn AB góc 90o Khi độ dài MB lớn nhất, đường thẳng MB qua điểm điểm sau? A H(−2; −1; 3) B I(−1; −2; 3) C J(−3; 2; 7) D K(3; 0; 15) − → Câu 11 Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → n→ Góc hai mặt phẳng (P) (Q) Q Biết cosin góc hai vectơ nP nQ − ◦ ◦ A 60 B 45 C 90◦ D 30◦ Trang 1/4 Mã đề 001 √ Câu 12 Cho hình thang cong (H) giới hạn đường y = x, y = 0, x = 0, x = Đường thẳng x = k (0 < k < 4) chia hình (H) thành hai phần có diện tích S S hình vẽ Để S = 4S giá trị k thuộc khoảng sau đây? A (3, 5; 3, 7)· B (3, 3; 3, 5)· C (3, 7; 3, 9)· D (3, 1; 3, 3)· Câu 13 Họ tất nguyên hàm hàm số f (x) = 5x4 + cos x A 5x5 − sin x + C B x5 + sin x + C C x5 − sin x + C D 5x5 + sin x + C Câu 14 Cho đa giac đêu 12 đinh Chon ngâu nhiên đinh 12 đinh cua đa giac Xac suât đê 3đinh đươc chon tao tam giac đêu la 1 1 B P = C P = D P = A P = 14 55 220 Câu 15 Thể tích khối hộp chữ nhật có kích thước a; 2a;3a A 2a3 B 6a2 C a3 D 6a3 Câu 16 Trên tập số phức, cho phương trình z2 + 2(m − 1)z + m + 2m = Có tham số m để phương trình cho có hai nghiệm phân biệt z1 ; z2 thõa mãn z1 + z2 = A B C D Câu 17 Biết z0 nghiệm phức có phần ảo âm phương trình z2 − (3 − 2i)z + − i = Khi tổng phần thực phần ảo z0 A B -1 C D -3 Câu 18 Biết phương trình z2 + mz − m + = có hai nghiệm số ảo Khi tham số thực m gần giá trị giá trị sau? A B −4 C D −1 Câu 19 Gọi M, N hai điểm biểu diễn số phức nghiệm phương trình z2 − 4z + 29 = Độ dài MN √ bao nhiêu? √ B MN = C MN = 10 D MN = 10 A MN = Câu 20 Biết z số phức thỏa mãn z2 + 3z + = Khi mơ-đun số phức w = z + ? √ √ √ √ B |w| = C |w| = D |w| = 2 A |w| = Câu 21 Kí hiệu z1 , z2 , z3 z4 bốn nghiệm phức phương trình z4 − z2 − 12 = Tính tổng T = |z1 | + |z√2 | + |z3 | + |z4 | √ √ A T = B T = C T = + D T = + Câu 22 Tìm tất giá trị thực tham số m để phương trình mz2 + 2mz − 3(m − 1) = khơng có nghiệm thực 3 A ≤ m < B < m < C m < m > D m ≥ 4 Câu 23 Tổng nghịch đảo nghiệm phương trình z4 −z3 −2z2 +6z−4 = tập số phức 1 3 A B − C D − 2 2 Câu 24 Biết z = + 2i nghiệm phức phương trình z2 + (m − 1)z + m − = (m tham số phức) Khi phần ảo m bao nhiêu? 7 A − B − C D 4 4 Câu 25 Biết z0 nghiệm phức có phần ảo dương phương trình z2 − 4z + 20 = Trên mặt phẳng tọa độ, điểm điểm biểu diễn số phức w = (1 + i)z0 − 2z0 ? A M3 (−2; 10) B M4 (6; −14) C M1 (6; 14) D M2 (2; −10) Trang 2/4 Mã đề 001 Câu 26 Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x + (a + 2)x + − a đồng biến khoảng (0; 1)? A B 11 C D 12 Câu 27 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) 1 A B C D Câu 28 Tích tất nghiệm phương trình ln x + 2lnx − = 1 A B −3 C −2 D Câu 29 Đồ thị hàm số có dạng đường cong hình bên? x−3 A y = x3 − 3x − B y = x4 − 3x2 + C y = D y = x2 − 4x + x−1 Câu 30 Cho hình chóp S ABC có đáy tam giác vuông B, S A vuông góc với đáy S A = AB (tham khảo hình bên) Góc hai mặt phẳng (S BC) (ABC) A 45◦ B 30◦ C 60◦ D 90◦ Câu 31 Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (−∞; 1) B (1; 2) C (1; +∞) D (2; +∞) Câu 32 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (1; 2; 3) B (−2; −4; −6) C (2; 4; 6) D (−1; −2; −3) Câu 33 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) B(3; 4; 6) Xét điểm M thay đổi cho tam giác OAM khơng có góc tù có diện tích 15 Giá trị nhỏ độ dài đoạn thẳng MB thuộc khoảng đây? A (4; 5) B (3; 4) C (6; 7) D (2; 3) √ Giá trị lớn biểu thức Câu 34 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | bằng√bao nhiêu? √ √ 10 B Pmax = C Pmax = D Pmax = A Pmax = 3 Câu 35 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C 18 D Câu 36 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A B 13 C D 2z − i Câu 37 Cho số phức z thỏa mãn |z| ≤ ĐặtA = Mệnh đề sau đúng? + iz A |A| ≤ B |A| < C |A| > D |A| ≥ Câu 38 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = B P = 2016 C P = −2016 D P = √ Câu 39 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 A ≤ |z| ≤ B |z| > C < |z| < D |z| < 2 2 √ Câu 40 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A B a + b + c C a2 + b2 + c2 − ab − bc − ca D a2 + b2 + c2 + ab + bc + ca Trang 3/4 Mã đề 001 √ 2 Mệnh đề Câu 41 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = đúng? A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3√ √ 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = Câu 42 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 Câu 43 Cho số phức z = a + bi (a, b ∈ R) thỏa mãn z + + 3i − z i = Tính S = 2a + 3b A S = −5 B S = C S = −6 D S = Câu 44 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (2; −3; 4) −n = (−2; 3; 1) −n = (−2; 3; 4) −n = (2; 3; −4) A → B → C → D → Câu 45 Một hộp chứa sáu cầu trắng bốn cầu đen Lấy ngẫu nhiên đồng thời bốn Tính xác suất cho có màu trắng 209 A B C D 210 105 210 21 Câu 46 Cho số phức z = (1 + i) (1 + 2i) Số phức z có phần ảo A −4 B C D 2i Câu 47 Tìm đạo hàm hàm số: y = (x + 1) 1 1 − 3 2 A x B (2x) C 3x(x + 1) D (x + 1) 2 → Câu 48 Cho đường thẳng ∆ qua điểm M(2; 0; −1) có véctơ phương −a = (4; −6; 2) Phương trình tham số đường thẳng ∆ A x = −2 + 2ty = −3tz = + t B x = + 2ty = −3tz = −1 + t C x = −2 + 4ty = −6tz = + 2t D x = + 2ty = −3tz = + t x+1 Câu 49 Đồ thị hàm số y = (C) có đường tiệm cận x−2 A y = x = B y = x = −1 C y = −1 x = D y = x = Câu 50 Cho hàm số y = f (x) có đồ thị hình vẽ Tìm m để phương trình f (x) = m có bốn nghiệm phân biệt A −4 < m ≤ −3 B −4 ≤ m < −3 C −4 < m < −3 D m > −4 - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001