Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001001 Câu 1 Cho hàm số f (x) thỏa mãn f ′′(x) = 12x2 + 6x − 4 và f (0) = 1, f (1)[.]
Kiểm tra LATEX ĐỀ KIỂM TRA THPT MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001001 Câu Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = −5 B f (−1) = −1 C f (−1) = −3 D f (−1) = Câu Cho hình trụ có hai đáy hai đường trịn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Câu Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối trịn xoay tạo thành quay (H) quanh trục Ox 8π 32 32π A V = B V = C V = D V = 3 5 Câu Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 m2 − 12 m2 − 4m2 − m2 − 12 B C D A m 2m 2m 2m Câu Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 A m < B m < C < m < D Không tồn m 3 √ sin 2x Câu Giá trị lớn hàm số y = ( π) R bằng? √ A π B π C D Câu Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện√tích lớn bằng? √ √ 3 3 A (m ) B 3(m2 ) C (m ) D (m2 ) Câu Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tam giác BCD và√có chiều cao chiều cao tứ diện √ √ tiếp 2 √ π 3.a π 2.a 2π 2.a A B C D π 3.a2 3 Câu Có số nguyên ysao cho ứng với số nguyên ycó tối đa 100 số nguyên xthỏa mãn 3y−2x ≥ log5 (x + y2 )? A 13 B 17 C 20 D 18 Câu 10 Tính đạo hàm hàm số y = x A y′ = x B y′ = x.5 x−1 C y′ = x ln D y′ = 5x ln Câu 11 Cho hàm số y = f (x) có đồ thị y = f ′ (3 − 2x) hình vẽ sau: Có giá trị nguyên tham số m ∈ [−2021; 2021] để hàm số g(x) = f ( x + 2021x + m) có điểm cực trị? A 2019 B 2022 C 2020 D 2021 Trang 1/4 Mã đề 001001 Câu 12 Cho hàm số y = f (x) xác định tập R có f ′ (x) = x2 − 5x + Khẳng định sau đúng? A Hàm số cho nghịch biến khoảng (3; +∞) B Hàm số cho đồng biến khoảng (1; 4) C Hàm số cho nghịch biến khoảng (1; 4) D Hàm số cho đồng biến khoảng (−∞; 3) Câu 13 Cho hai số phức u, v thỏa mãn u = v = 10 3u − 4v = 50 Tìm giá trị lớn biểu thức 4u + 3v − + 6i A 40 B 50 C 60 D 30 √ √ a Tính góc Câu 14 Cho hình chóp S ABCD có cạnh đáy a đường cao S H mặt bên (S DC) mặt đáy A 30o B 60o C 45o D 90o Câu 15 Tổng tất nghiệm phương trình log2 (6 − x ) = − x A B C D Câu 16 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực đại đồ thị hàm số cho có tọa độ A (−3; 0) B (−1; −4) C (0; −3) D (1; −4) Câu 17 Biết phương trình z2 + mz − m + = có hai nghiệm số ảo Khi tham số thực m gần giá trị giá trị sau? A −1 B −4 C D Câu 18 Biết z số phức thỏa mãn z2 + 3z + = Khi mô-đun số phức w = z + ? √ √ √ √ B |w| = C |w| = 2 D |w| = A |w| = Câu 19 Tất bậc bốn tập số phức có tổng mô-đun bao nhiêu? A B C D Câu 20 Kí hiệu z1 , z2 , z3 z4 bốn nghiệm phức phương trình z4 − z2 − 12 = Tính tổng T = |z1 | + |z2 | +√|z3 | + |z4 | √ √ B T = C T = D T = + A T = + Câu 21 Cho phương trình bậc hai az2 + bz + c = (với a, b, c ∈ R) Xét tập số phức, khẳng định sau, đâu khẳng định sai? A Nếu ∆ = b2 − 4ac < phương trình vơ nghiệm −b B Phương trình cho có tổng hai nghiệm a c C Phương trình cho có tích hai nghiệm a D Phương trình cho ln có nghiệm Câu 22 Tất bậc hai số phức z = 15 − 8i là: A − i −4 + i B + i −4 + i C − 2i −5 + 2i D − i + 3i Câu 23 Biết z = + i z = nghiệm phương trình z3 + az2 + bz + c = (với a, b ∈ R ) Khi tổng a + b + c bao nhiêu? A −2 B C D Câu 24 Biết z0 nghiệm phức có phần ảo dương phương trình z2 − 4z + 20 = Trên mặt phẳng tọa độ, điểm điểm biểu diễn số phức w = (1 + i)z0 − 2z0 ? A M2 (2; −10) B M4 (6; −14) C M1 (6; 14) D M3 (−2; 10) Trang 2/4 Mã đề 001001 Câu 25 Tìm tất giá trị thực tham số m để phương trình mz2 + 2mz − 3(m − 1) = khơng có nghiệm thực 3 A < m < B m ≥ C ≤ m < D m < m > 4 Câu 26 Tập nghiệm bất phương trình log(x − 2) > A (12; +∞) B (−∞; 3) C (3; +∞) D (2; 3) Câu 27 Trong không gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 90◦ B 60◦ C 45◦ D 30◦ R4 R4 R4 Câu 28 Nếu −1 f (x) = −1 g(x) = −1 [ f (x) + g(x)] A B C −1 D Câu 29 Với a số thực dương tùy ý, ln(3a) − ln(2a) B ln(6a2 ) C ln D lna A ln Câu 30 Đồ thị hàm số có dạng đường cong hình bên? x−3 x−1 Câu 31 Trong khơng gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trìnhlà: x = + 2t x=5+t x = + 2t x = + 2t y = + 3t y = + 2t y = −1 + t y = −1 + 3t A B C D z = −1 + t z = + 3t z = −1 + 3t z = −1 + t A y = x4 − 3x2 + B y = x3 − 3x − C y = x2 − 4x + D y = Câu 32 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) 1 B C D A Câu 33 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa độ A (1; −2; 3) B (−1; 2; 3) C (−1; −2; −3) D (1; 2; −3) Câu 34 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm R B điểm Q bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z D điểm P √ Câu 35 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | bằng√bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = 3 √ Câu 36 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 A < |z| < B |z| < C ≤ |z| ≤ D |z| > 2 2 Câu 37 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = (|z| − 2)2 B P = (|z| − 4)2 C P = |z|2 − D P = |z|2 − Câu 38 Cho số phức z , thỏa mãn A |z| = B |z| = C điểm S z+1 số ảo Tìm |z| ? z−1 C |z| = D |z| = Trang 3/4 Mã đề 001001 Câu 39 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − hai nghiệm phức √ phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ 97 85 C T = D T = 13 A T = 13 B T = 3 Câu 40 Cho số phức z thỏa mãn |z − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i B |w|min = C |w|min = D |w|min = A |w|min = 2 Câu 41 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ D P = B P = C P = A P = 2 Câu 42 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i A |z| = B |z| = C |z| = D |z| = Câu 43 Trong số phức z thỏa mãn z − i = z¯ − − 3i Hãy tìm z có mơđun nhỏ 27 6 27 27 A z = + i B z = − + i C z = − − i D z = − i 5 5 5 5 Câu 44 Tập nghiệm bất phương trình log3 (36 − x ) ≥ A (−∞; 3] B (−∞; −3] ∪ [3; +∞) C [−3; 3] D (0; 3] Câu 45 Tâm I bán kính R mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = là: A I(1; 2; −3); R = B I(1; 2; 3); R = C I(1; −2; 3); R = D I(−1; 2; −3); R = Câu R46 Tìm nguyên hàm hàm số f (x) = cos 3x R A cos 3xdx = sin 3x + C B cos 3xdx = sin 3x + C R R sin 3x sin 3x + C D cos 3xdx = + C C cos 3xdx = − 3 Câu 47 Cho lăng trụ đứng ABC.A′ B′C ′ có cạnh BC = 2a, góc hai mặt phẳng (ABC) (A′ BC)bằng ′ ′ ′ 600 Biết diện tích tam giác ∆A′ BC 2a2 Tính thể tích V √ khối lăng trụ ABC.A B C 3 √ a 2a C V = A V = B V = a3 D V = 3a3 3 Câu 48 Tìm tất giá trị thực tham số mđể hàm số y = (m + 1)x4 − mx2 + có cực tiểu mà khơng có cực đại A −1 ≤ m ≤ B m > C −1 ≤ m < D m < −1 Câu 49 Một hộp chứa sáu cầu trắng bốn cầu đen Lấy ngẫu nhiên đồng thời bốn Tính xác suất cho có màu trắng 1 209 B C D A 21 210 105 210 Câu 50 Cho hình phẳng D giới hạn đường y = (x − 2)2 , y = 0, x = 0, x = Khối trịn xoay tạo thành quay D quạnh trục hồnh tích V bao nhiêu? 32π 32 32 A V = B V = C V = D V = 32π 5π 5 - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001001