Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Tìm giá trị cực đại yCD của hàm số y = x3 − 12x + 20 A yCD = 36 B yCD =[.]
Kiểm tra LATEX ĐỀ KIỂM TRA THPT MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = 36 B yCD = 52 C yCD = −2 D yCD = Câu Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(1; 0; 3) B A(1; 2; 0) C A(0; 2; 3) D A(0; 0; 3) Câu Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x3 + x2 y = x2 +3x+mcắt nhiều điểm A −2 ≤ m ≤ B < m < C m = D −2 < m < R Câu Tính nguyên hàm cos 3xdx 1 A −3 sin 3x + C B − sin 3x + C C sin 3x + C D sin 3x + C 3 Câu Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 C [ ; 2] [22; +∞) D ( ; 2] [22; +∞) A [22; +∞) B ( ; +∞) 4 Câu Đường cong hình bên đồ thị hàm số nào? A y = −x4 + B y = −x4 + 2x2 + C y = x4 + 2x2 + D y = x4 + log Câu √ Cho a > a , Giá trị a A B D Câu Biết R5 A T = √ a dx = ln T Giá trị T là: 2x − B T = 81 bằng? C C T = D T = √ Câu Có số nguyên ysao cho ứng với số nguyên ycó tối đa 100 số nguyên xthỏa mãn 3y−2x ≥ log5 (x + y2 )? A 13 B 17 C 20 D 18 Câu 10 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y + 3z − = Một véc tơ pháp tuyến (P) −n = (1; 2; 3) −n = (1; 3; −2) −n = (1; −2; 3) −n = (1; −2; −1) A → B → C → D → Câu 11 Tính thể tích V khối trịn xoay quay hình phẳng giới hạn đồ thị (C) : y = − x2 trục hoành quanh trục Ox 22π 7π 512π A V = B V = C V = D V = 15 Câu 12 Cho đa giac đêu 12 đinh Chon ngâu nhiên đinh 12 đinh cua đa giac Xac suât đê 3đinh đươc chon tao tam giac đêu la 1 1 A P = B P = C P = D P = 14 55 220 Câu 13 Thể tích khối hộp chữ nhật có kích thước a; 2a;3a A a3 B 6a2 C 2a3 D 6a3 Trang 1/4 Mã đề 001 √ Câu 14 Cho hình thang cong (H) giới hạn đường y = x, y = 0, x = 0, x = Đường thẳng x = k (0 < k < 4) chia hình (H) thành hai phần có diện tích S S hình vẽ Để S = 4S giá trị k thuộc khoảng sau đây? A (3, 1; 3, 3)· B (3, 3; 3, 5)· C (3, 5; 3, 7)· D (3, 7; 3, 9)· Câu 15 Cho hàm số f (x) liên tục R R2 ( f (x) + 2x) = Tính A −1 B R2 f (x) C Câu 16 Tập nghiệm bất phương trình 52x+3 > −1 A (−∞; −3) B ∅ C (−3; +∞) D −9 D R Câu 17 Biết z nghiệm phức có phần ảo dương phương trình z2 − 4z + 13 = Khi mô-đun số phức w = z2 + 2z bao nhiêu?√ √ √ A |w| = B |w| = 13 C |w| = 37 D |w| = 13 Câu 18 Biết phương trình z2 + mz − m + = có hai nghiệm số ảo Khi tham số thực m gần giá trị giá trị sau? A B C −1 D −4 Câu 19 Tất bậc hai số phức z = 15 − 8i là: A + i −4 + i B − i + 3i C − 2i −5 + 2i D − i −4 + i Câu 20 Hai số phức z1 = + i z2 = − 3i nghiệm phương trình sau đây? A z2 + (5 − 2i)z − + 7i = B z2 − (1 + 4i)z + − 7i = C z − (5 − 2i)z + − 7i = D z2 + (1 + 4i)z − + 7i = Câu 21 Tìm tất giá trị thực tham số m để phương trình mz2 + 2mz − 3(m − 1) = khơng có nghiệm thực 3 A < m < B ≤ m < C m < m > D m ≥ 4 Câu 22 Kí hiệu z1 , z2 , z3 z4 bốn nghiệm phức phương trình z4 − z2 − 12 = Tính tổng T = |z1 | + |z√2 | + |z3 | + |z4 | √ √ A T = B T = + C T = + D T = Câu 23 Cho phương trình bậc hai az2 + bz + c = (với a, b, c ∈ R) Xét tập số phức, khẳng định sau, đâu khẳng định sai? c A Phương trình cho có tích hai nghiệm a B Phương trình cho ln có nghiệm −b C Phương trình cho có tổng hai nghiệm a D Nếu ∆ = b2 − 4ac < phương trình vơ nghiệm Câu 24 Biết z = + i z = nghiệm phương trình z3 + az2 + bz + c = (với a, b ∈ R ) Khi tổng a + b + c bao nhiêu? A B C D −2 Câu 25 Tất bậc bốn tập số phức có tổng mơ-đun bao nhiêu? A B C D Câu 26 Có cặp số nguyên (x; y) thỏa mãnlog3 (x2 + y2 + x) + log2 (x2 + y2 ) ≤ log3 x + log2 (x2 + y2 + 24x)? A 49 B 90 C 89 D 48 Câu 27 Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x + (a + 2)x + − a đồng biến khoảng (0; 1)? A B 12 C 11 D Trang 2/4 Mã đề 001 Câu 28 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: 1 ln3 A y′ = − B y′ = C y′ = xln3 x x D y′ = xln3 Câu 29 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Có giá trị nguyên tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt? A B C D Câu 30 Với a số thực dương tùy ý, ln(3a) − ln(2a) B lna C ln(6a2 ) A ln ax + b Câu 31 Cho hàm số y = có đồ thị đường cong hình bên cx + d Tọa độ giao điểm đồ thị hàm số cho trục hoành A (0; −2) B (−2; 0) C (0; 2) D ln D (2; 0) Câu 32 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 A B C D R4 R4 R4 Câu 33 Nếu −1 f (x) = −1 g(x) = −1 [ f (x) + g(x)] A B C −1 D Câu 34 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = B A = + i C A = D A = −1 z Câu 35 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| thức bằng? + |z|2 √ C D A B Câu 36 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A z số thực không dương B z số ảo C |z| = D Phần thực z số âm = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu!diễn số phức thuộc tập hợp!nào sau đây? ! ! 9 A 0; B ; +∞ C ; D ; 4 4 Câu 37 Cho số phức z thỏa mãn (3 − 4i)z − Câu 38 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = |z|2 − B P = (|z| − 2)2 C P = |z|2 − D P = (|z| − 4)2 Câu 39 Cho số phức z (không phải số thực, số ảo) thỏa mãn Khi mệnh đề sau đúng? A < |z| < B < |z| < 2 C < |z| < 2 D + z + z2 số thực − z + z2 < |z| < 2 Câu 40 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z2 | √ √ √ A P = 26 B P = + C P = D P = 34 + Trang 3/4 Mã đề 001 Câu 41 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | √ i Giá trị (a + bz + cz2 )(a + bz2 + cz) Câu 42 Cho a, b, c số thực z = − + 2 A a + b + c B a2 + b2 + c2 + ab + bc + ca C a2 + b2 + c2 − ab − bc − ca D Câu 43 Một hộp chứa sáu cầu trắng bốn cầu đen Lấy ngẫu nhiên đồng thời bốn Tính xác suất cho có màu trắng 209 1 A B C D 210 105 210 21 Câu 44 Cho hàm số y = f (x) xác định liên tục đoạn có [−2; 2] có đồ thị đường cong hình vẽ bên Điểm cực tiểu đồ thị hàm số y = f (x) A M(−2; −4) B x = C x = −2 D M(1; −2) x+1 (C) có đường tiệm cận Câu 45 Đồ thị hàm số y = x−2 A y = x = −1 B y = −1 x = C y = x = D y = x = Câu 46 Tập nghiệm bất phương trình log3 (36 − x2 ) ≥ A [−3; 3] B (−∞; 3] C (−∞; −3] ∪ [3; +∞) D (0; 3] π R4 Câu 47 Cho hàm số f (x) Biết f (0) = f ′ (x) = sin2 x + 1, ∀x ∈ R, f (x) π2 + 15π A 16 π2 + 16π − B 16 π2 + 16π − 16 C 16 π2 − D 16 √ Câu 48 Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức z thoả mãn z + − 8i = đường trịn có phương trình: √ √ B (x − 4)2 + (y + 8)2 = A (x + 4)2 + (y − 8)2 = C (x − 4)2 + (y + 8)2 = 20 D (x + 4)2 + (y − 8)2 = 20 Câu 49 Biết phương trình log22 x − 7log2 x + = có nghiệm x1 , x2 Giá trị x1 x2 A 128 B 64 C 512 D Câu 50 Cho số phức z = (1 + i)2 (1 + 2i) Số phức z có phần ảo A 2i B C −4 D - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001