Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Một hình trụ có diện tích xung quanh bằng 4π và có thiết diện qua trục c[.]
Kiểm tra LATEX ĐỀ KIỂM TRA THPT MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A 4π B 2π C 3π D π Câu Tập nghiệm bất phương trình log (x − 1) ≥ là: A (1; 2] Câu Biết B (−∞; 2] R5 A T = dx = ln T Giá trị T là: 2x − B T = D [2; +∞) C (1; 2) C T = √ D T = 81 Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D Câu Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m > B m ≥ −1 C m ≥ D m ≥ Câu Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(1; 2; 0) B A(1; 0; 3) C A(0; 0; 3) D A(0; 2; 3) Câu Cho x, y, z ba số thực khác thỏa mãn x = 5y = 10−z Giá trị biểu thức A = xy + yz + zxbằng? A B C D y+2 z x−1 = = Viết phương Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x − 2y − = B (P) : x − y − 2z = C (P) : x − y + 2z = D (P) : x + y + 2z = Câu Choa,b số dương, a , 1sao cho loga b = 2, giá trị loga (a3 b) A 3a B C D Câu 10 Trong khơng gian Oxyz, cho mặt cầu (S ) có tâm I(−1; −4; 2) điểmM(1; 2; 2)thuộc mặt cầu Phương trình (S ) √ A (x − 1)2 + (y − 4)2 + (z + 2)2 = 10 B (x + 1)2 + (y + 4)2 + (z − 2)2 = 40 C (x + 1)2 + (y + 4)2 + (z − 2)2 = 40 D (x − 1)2 + (y − 4)2 + (z + 2)2 = 40 Câu 11 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) mặt phẳng (P) : 2x+2y−z+9 = Đường thẳng d qua A có vectơ phương ⃗u = (3; 4; −4) cắt (P) B Điểm M thay đổi (P) cho M ln nhìn đoạn AB góc 90o Khi độ dài MB lớn nhất, đường thẳng MB qua điểm điểm sau? A I(−1; −2; 3) B K(3; 0; 15) C H(−2; −1; 3) D J(−3; 2; 7) Câu 12 Cho số phức z1 = − 4i; z2 = − i, phần ảo số phức z1 z2 A B −7 C −1 D Câu 13 Cho đa giac đêu 12 đinh Chon ngâu nhiên đinh 12 đinh cua đa giac Xac suât đê 3đinh đươc chon tao tam giac đêu la 1 1 A P = B P = C P = D P = 220 14 55 Trang 1/4 Mã đề 001 Câu 14 Cho hàm số f (x) liên tục R R2 ( f (x) + 2x) = Tính A −1 B −9 R2 f (x) C D Câu 15 Cho hàm số y = ax + bx + c có đồ thị đường cong hình bên Điểm cực đại đồ thị hàm số cho có tọa độ A (−3; 0) B (−1; −4) C (1; −4) D (0; −3) Câu 16 Có cặp số nguyên (x; y) thỏa mãn log4 (9x2 + 16y2 + 112y) + log3 (9x2 + 16y2 ) < log4 y + log3 (684x2 + 1216y2 + 720y)? A 56 B 64 C 76 D 48 Câu 17 Biết z = − 3i nghiệm phương trình z2 + az + b = ( với a, b ∈ R ) Khi hiệu a − b A −8 B C 12 D −12 Câu 18 Biết z0 nghiệm phức có phần ảo âm phương trình z2 − (3 − 2i)z + − i = Khi tổng phần thực phần ảo z0 A B -1 C -3 D Câu 19 Phương trình (2 − i)z + 3(1 + iz) = + 8i có nghiệm A z = −3 − i B z = + i C z = −3 + i D z = − i Câu 20 Gọi z1 , z2 hai nghiệm phức phương trình 2(1+i)z2 −4(2−i)z−5−3i = TổngT = |z1 |2 +|z2 |2 bao nhiêu? √ 13 13 C T = D T = A T = B T = Câu 21 Cho phương trình bậc hai az2 + bz + c = (với a, b, c ∈ R) Xét tập số phức, khẳng định sau, đâu khẳng định sai? c A Phương trình cho có tích hai nghiệm a B Phương trình cho ln có nghiệm C Nếu ∆ = b2 − 4ac < phương trình vơ nghiệm −b D Phương trình cho có tổng hai nghiệm a Câu 22 Gọi z1 , z2 , z3 ba nghiệm phức phương trình z3 −z2 +2 = Khi tổngP = |z1 +z2 +z3 +2−3i| bao √ nhiêu? √ B P = 13 C P = D P = A P = Câu 23 Gọi M, N hai điểm biểu diễn số phức nghiệm phương trình z2 − 4z + 29 = Độ dài MN bao nhiêu? √ √ A MN = 10 B MN = C MN = 10 D MN = Câu 24 Biết z = + i z = nghiệm phương trình z3 + az2 + bz + c = (với a, b ∈ R ) Khi tổng a + b + c bao nhiêu? A B −2 C D Câu 25 Tất bậc hai số phức z = 15 − 8i là: A − i −4 + i B + i −4 + i C − 2i −5 + 2i D − i + 3i Câu 26 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (2; 4; 6) B (−2; −4; −6) C (1; 2; 3) D (−1; −2; −3) Câu 27 Trong không gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 90◦ B 60◦ C 30◦ D 45◦ Câu 28 Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (1; +∞) B (−∞; 1) C (1; 2) D (2; +∞) Trang 2/4 Mã đề 001 Câu 29 Nếu A R4 −1 R4 R4 f (x) = −1 g(x) = −1 [ f (x) + g(x)] B −1 C D Câu 30 Tích tất nghiệm phương trình ln2 x + 2lnx − = 1 A −2 B C D −3 Câu 31 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 B C D A Câu 32 Có cặp số nguyên (x; y) thỏa mãnlog3 (x2 + y2 + x) + log2 (x2 + y2 ) ≤ log3 x + log2 (x2 + y2 + 24x)? A 89 B 48 C 90 D 49 Câu 33 Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n4 = (1; 1; −1) B → n1 = (−1; 1; 1) C → n2 = (1; −1; 1) D → n3 = (1; 1; 1) √ điểm A hình vẽ bên điểm Câu 34 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm N B điểm M bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm Q D điểm P Câu 35 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − 3√là hai nghiệm phức phương trình z2 + az + b = Tính T = |z1 | + |z2 | √ √ √ 85 97 A T = B T = 13 C T = 13 D T = 3 Câu 36 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = −2016 B P = C P = D P = 2016 √ 2 Mệnh đề Câu 37 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = đúng? A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3√ √ 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 Câu 38 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√ + 2b √ √ √ A B 10 C D 15 z Câu 39 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| thức bằng? + |z|2 √ 1 A B C D + z + z2 Câu 40 Cho số phức z (không phải số thực, số ảo) thỏa mãn số thực − z + z2 Khi mệnh đề sau đúng? B < |z| < C < |z| < D < |z| < A < |z| < 2 2 2 Trang 3/4 Mã đề 001 Câu 41 Cho số phức z thỏa mãn z số thực ω = biểu thức √ M = |z + − i| √ A B 2 z số thực Giá trị lớn + z2 C D Câu 42 Cho số√phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| A max T = B P = −2016 C P = 2016 D P = R Câu 43 6x5 dxbằng A x6 + C B 30x4 + C C 6x6 + C D x6 + C Câu 44 Cho hàm số có bảng biến thiên: Khẳng định sau đúng? A Hàm số đạt cực đại B Hàm số đạt cực đại C Hàm số đạt cực đại D Hàm số đạt cực đại Câu 45 Biết R3 A f (x)dx = R3 g(x)dx = Khi R3 [ f (x) + g(x)]dx B C D −2 Câu 46 Tìm đạo hàm hàm số: y = (x + 1) 1 1 − 3 A 3x(x + 1) B x C (x + 1) D (2x) 2 Câu 47 Số phức z = − 2i có điểm biểu diễn mặt phẳng tọa độ M Tìm tọa độ điểm M A M(−2; 5) B M(5; −2) C M(−5; −2) D M(5; 2) Câu 48 Cho số phức z = (1 + i)2 (1 + 2i) Số phức z có phần ảo A B C −4 D 2i √ Câu 49 Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức z thoả mãn z + − 8i = đường tròn có phương trình: A (x − 4)2 + (y + 8)2 = 20 √ C (x − 4)2 + (y + 8)2 = √ B (x + 4)2 + (y − 8)2 = D (x + 4)2 + (y − 8)2 = 20 Câu 50 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (−2; 3; 4) −n = (−2; 3; 1) −n = (2; −3; 4) −n = (2; 3; −4) A → B → C → D → - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001