1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề kiểm tra thpt môn toán (988)

4 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề ĐỀ KIỂM TRA THPT MÔN TOÁN
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022 - 2023
Định dạng
Số trang 4
Dung lượng 122,5 KB

Nội dung

Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Cho hình thang cân có độ dài đáy nhỏ và hai cạnh bên đều bằng 1 mét Khi[.]

Trang 1

Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 4 trang)

Mã đề 001 Câu 1 Cho hình thang cân có độ dài đáy nhỏ và hai cạnh bên đều bằng 1 mét Khi đó hình thang đã cho

có diện tích lớn nhất bằng?

√ 3

√ 3

Câu 2 Cho hàm số y= x−√2017 Mệnh đề nào dưới đây là đúng về đường tiệm cận của đồ thị hàm số?

A Không có tiệm cận.

B Có một tiệm cận ngang và không có tiệm cận đứng.

C Có một tiệm cận ngang và một tiệm cận đứng .

D Không có tiệm cận ngang và có một tiệm cận đứng.

Câu 3 Cắt một hình nón bởi một mặt phẳng đi qua trục của nó, ta được thiết diện là tam giác vuông với

cạnh huyền bằng 2a Tính thể tích của khối nón

A. π.a3

π√2.a3

4π√2.a3

2π.a3

3 .

Câu 4 Giá trị lớn nhất của hàm số y= (√π)sin 2x

trên R bằng?

Câu 5 Đường cong trong hình bên là đồ thị của hàm số nào?

A y= x4+ 1 B y= x4+ 2x2+ 1 C y= −x4+ 2x2+ 1 D y = −x4+ 1

Câu 6 Cho hình phẳng (H) giới hạn bởi các đường y = x2; y= 0; x = 2 Tính thể tích V của khối tròn xoay tạo thành khi quay (H) quanh trục Ox

A V = 8π

5 .

Câu 7 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0; 4) Tìm tọa độ trung

điểm I của đoạn thẳng AB

A I(0; −1; 2) B I(1; 1; 2) C I(0; 1; 2) D I(0; 1; −2).

Câu 8 Cho hàm số y= x3+ 3x2− 9x − 2017 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng (−3; 1) B Hàm số nghịch biến trên khoảng (1;+∞)

C Hàm số đồng biến trên khoảng (−3; 1) D Hàm số nghịch biến trên khoảng (−∞; −3) Câu 9 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y+ 3z − 1 = 0 Một véc tơ pháp tuyến của (P) là

A.→−n = (1; −2; −1) B.→−n = (1; 3; −2) C.→−n = (1; 2; 3) D.→−n = (1; −2; 3)

Câu 10 Đạo hàm của hàm số y= (2x + 1)−

1

3 trên tập xác định là

A −2

3(2x+ 1)−

4

1

3 ln(2x+ 1)

C −1

3(2x+ 1)−

4

1

3 ln(2x+ 1)

Câu 11 Có bao nhiêu số nguyên ysao cho ứng với mỗi số nguyên ycó tối đa 100 số nguyên xthỏa mãn

3y−2x ≥ log5(x+ y2)?

Trang 2

Câu 12 Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn

phương án dưới đây Hỏi hàm số đó là hàm số nào?

Câu 13 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực đại của đồ thị hàm số đã cho có tọa độ là

Câu 14 Tập nghiệm của bất phương trình 52x+3 > −1 là

Câu 15 Cho cấp số nhân (un) với u1= 3 và công bội q = −2 Số hạng thứ 7 của cấp số nhân đó là

Câu 16 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) và mặt phẳng (P) : 2x+2y−z+9 = 0 Đường thẳng d đi qua A và có vectơ chỉ phương ⃗u = (3; 4; −4) cắt (P) tại B Điểm M thay đổi trong (P) sao cho M luôn nhìn đoạn AB dưới góc 90o Khi độ dài MB lớn nhất, đường thẳng MB đi qua điểm nào trong các điểm sau?

A H(−2; −1; 3) B J(−3; 2; 7) C K(3; 0; 15) D I(−1; −2; 3).

Câu 17 Cho phương trình bậc hai az2+ bz + c = 0 (với a, b, c ∈ R) Xét trên tập số phức, trong các khẳng định sau, đâu là khẳng định sai?

A Nếu∆ = b2− 4ac < 0 thì phương trình đã vô nghiệm

B Phương trình đã cho có tổng hai nghiệm bằng −b

a .

C Phương trình đã cho luôn có nghiệm.

D Phương trình đã cho có tích hai nghiệm bằng c

a.

Câu 18 Biết z = 1 + i và z = 2 là một trong các nghiệm của phương trình z3 + az2+ bz + c = 0 (với

a, b ∈ R ) Khi đó tổng a + b + c bằng bao nhiêu?

Câu 19 Biết z0là nghiệm phức có phần ảo âm của phương trình z2− (3 − 2i)z+ 5 − i = 0

Khi đó tổng phần thực và phần ảo của z0là

Câu 20 Căn bậc hai của -4 trong tập số phức là.

A 2 hoặc -2 B không tồn tại C 2i hoặc -2i D 4i.

Câu 21 Biết z = 1 − 3i là một nghiệm của phương trình z2+ az + b = 0 ( với a, b ∈ R ) Khi đó hiệu

a − bbằng

Câu 22 Gọi z1, z2là hai nghiệm phức của phương trình 2(1+i)z2−4(2−i)z−5−3i= 0 TổngT = |z1|2+|z2|2 bằng bao nhiêu?

A T =

13

4 .

Câu 23 Hai số phức z1= 3 + i và z2= 2 − 3i là nghiệm của phương trình nào sau đây?

A z2+ (1 + 4i)z − 9 + 7i = 0 B z2− (5 − 2i)z+ 9 − 7i = 0

C z2+ (5 − 2i)z − 9 + 7i = 0 D z2− (1+ 4i)z + 9 − 7i = 0

Câu 24 Gọi M, N là hai điểm biểu diễn các số phức là nghiệm của phương trình z2− 4z+ 29 = 0 Độ dài MN bằng bao nhiêu?

Câu 25 Phương trình (2 − i)z+ 3(1 + iz) = 7 + 8i có nghiệm là

Trang 3

Câu 26 Cho hàm số y= f (x) có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

Câu 27 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên

Có bao nhiêu giá trị nguyên của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?

Câu 28 Tập nghiệm của bất phương trình 2x+1< 4 là

Câu 29 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z= 7 − 6i có tọa độ là

Câu 30 Cho số phức z= 2 + 9i, phần thực của số phức z2bằng

Câu 31 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:

A.→−n3= (1; 1; 1) B.→−n1 = (−1; 1; 1) C.→−n2 = (1; −1; 1) D.→−n4 = (1; 1; −1)

Câu 32 Tiệm cận ngang của đồ thị hàm số y= 2x+ 1

3x − 1 là đường thẳng có phương trình:

A y= 1

3.

Câu 33 Cho hình nón có đường kính đáy 2r và độ dài đường sinh l Diện tích xung quanh của hình nón

đã cho bằng

A. 2

Câu 34 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa

|w|, với w= z − 2 + 2i

A |w|min= 3

2. B |w|min= 1

2. C |w|min = 2 D |w|min = 1

Câu 35 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?

A |z| > 2 B |z| < 1

1

2 < |z| < 3

3

2 ≤ |z| ≤ 2.

Câu 36 Gọi z1; z2là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức

[(i − z1)(i − z2)]2017bằng bao nhiêu?

Câu 37 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.

Biết rằng điểm biểu diễn số phức ω = 1

z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?

Câu 38 Cho số phức z thỏa mãn

z+ 1 z

= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là

Câu 39 Cho a, b, c là các số thực và z= −1

2+

√ 3

2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng

A a2+ b2+ c2− ab − bc − ca B a+ b + c

Câu 40 Cho số phức z thỏa mãn (3 − 4i)z − 4

|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?

A. 1

4;

5

4

!

4;+∞

!

2;

9 4

!

4

!

Trang 4

Câu 41 Cho số phức z thỏa mãn |z|= 1 Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|

Câu 42 Cho số phức z thỏa mãn z không phải là số thực và ω= z

2+ z2 là số thực Giá trị lớn nhất của biểu thức M= |z + 1 − i| là

Câu 43 Cho hình phẳng (H) giới hạn bởi đồ thị hàm số y = x2và đường thẳng y = mx với m , 0 Hỏi

có bao nhiêu số nguyên dương m để diện tích hình phẳng (H) là số nhỏ hơn 20

Câu 44 Đường cong trong hình bên dưới là đồ thị của hàm số nào dưới đây?

A y= −x4+ 2x2+ 2 B y= −x3+ 3x2+ 2 C y= x3− 3x2+ 2 D y= x4− 2x2+ 2

Câu 45 Tập nghiệm của bất phương trình log3(36 − x2) ≥ 3 là

A [−3; 3] B (−∞; −3] ∪ [3; +∞) C (−∞; 3] D (0; 3].

Câu 46 Cho hàm số y= f (x) có đồ thị như hình vẽ dưới đây Tìm m để phương trình f (x) = m có bốn nghiệm phân biệt

A m > −4 B −4 ≤ m < −3 C −4 < m < −3 D −4 < m ≤ −3.

Câu 47 Trong không gian Oxyz, cho mặt cầu (S ) : (x+ 1)2+ (y − 3)2+ (z + 2)2 = 9 Mặt phẳng (P) tiếp xúc với mặt cầu (S ) tại điểm A(−2; 1; −4) có phương trình là:

A 3x − 4y+ 6z + 34 = 0 B x+ 2y + 2z + 8 = 0

C −x+ 2y + 2z + 4 = 0 D x − 2y − 2z − 4= 0

Câu 48 Cho hàm số y= f (x) có bảng biến thiên như sau :

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Câu 49 Biết F(x)= x2là một nguyên hàm của hàm số f (x) trên R Giá trị của

3

R

1

[1+ f (x)]dx bằng

32

3 .

Câu 50 Tâm I và bán kính R của mặt cầu (S ) : (x − 1)2+ (y + 2)2+ (z − 3)2 = 9 là:

A I(1; 2; −3); R = 3 B I(1; −2; 3); R = 3 C I(1; 2; 3); R= 3 D I(−1; 2; −3); R= 3

HẾT

Ngày đăng: 10/04/2023, 14:39

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN