Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Cho hàm số f (x) thỏa mãn f ′′(x) = 12x2 + 6x − 4 và f (0) = 1, f (1) =[.]
Kiểm tra LATEX ĐỀ KIỂM TRA THPT MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = B f (−1) = −1 C f (−1) = −3 D f (−1) = −5 Câu Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối trịn xoay tạo thành quay (H) quanh trục Ox 32π 32 8π A V = B V = C V = D V = 5 Câu Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện√tích lớn bằng? √ √ 3 3 2 A (m ) B 3(m ) (m ) D (m2 ) C Câu Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = 36 B yCD = 52 C yCD = D yCD = −2 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(0; 0; 3) B A(0; 2; 3) C A(1; 0; 3) D A(1; 2; 0) Câu Đường cong hình bên đồ thị hàm số nào? A y = −x4 + B y = x4 + C y = −x4 + 2x2 + D y = x4 + 2x2 + Câu Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A 4π B 2π C π D 3π Câu Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 C m < D m < A Không tồn m B < m < 3 Câu Cho hình chóp S ABCD có cạnh đáy a Tính khoảng cách từ điểm A đến mặt phẳng (S BD) theo a √ √ a a B C D 2a A a 2 Câu 10 Cho cấp số nhân (un ) với u1 = công bội q = −2 Số hạng thứ cấp số nhân A 192 B −192 C 384 D −384 Câu 11 Tập nghiệm bất phương trình 52x+3 > −1 A ∅ B (−∞; −3) C (−3; +∞) D R Câu 12 Cho hàm số y = f (x) hàm số bậc có đồ thị hình vẽ Giá trị cực tiểu hàm số cho A −2 B C −1 D Câu 13 Trên tập số phức, cho phương trình z2 + 2(m − 1)z + m + 2m = Có tham số m để phương trình cho có hai nghiệm phân biệt z1 ; z2 thõa mãn z1 + z2 = A B C D Câu 14 Cho đa giac đêu 12 đinh Chon ngâu nhiên đinh 12 đinh cua đa giac Xac suât đê 3đinh đươc chon tao tam giac đêu la 1 1 A P = B P = C P = D P = 14 220 55 Trang 1/4 Mã đề 001 √ Câu 15 Cho hình thang cong (H) giới hạn đường y = x, y = 0, x = 0, x = Đường thẳng x = k (0 < k < 4) chia hình (H) thành hai phần có diện tích S S hình vẽ Để S = 4S giá trị k thuộc khoảng sau đây? A (3, 1; 3, 3)· B (3, 3; 3, 5)· C (3, 5; 3, 7)· D (3, 7; 3, 9)· y−6 z+2 x−2 = = Câu 16 Trong không gian Oxyz, cho hai đường thẳng chéo d1 : −2 x−4 y+1 z+2 d2 : = = Gọi mặt phẳng (P) chứa d1 (P)song song với đường thẳng d2 Khoảng −2 cách từ điểm M(1; 1; 1) đến (P) √ B √ D √ C √ A 10 10 53 Câu 17 Biết z = − 3i nghiệm phương trình z2 + az + b = ( với a, b ∈ R ) Khi hiệu a − b A −8 B −12 C 12 D Câu 18 Gọi M, N hai điểm biểu diễn số phức nghiệm phương trình z2 − 4z + 29 = Độ dài MN √ bao nhiêu? √ B MN = 10 C MN = D MN = 10 A MN = Câu 19 Biết z số phức thỏa mãn z2 + 3z + = Khi mơ-đun số phức w = z + ? √ √ √ √ A |w| = B |w| = C |w| = 2 D |w| = Câu 20 Biết z0 nghiệm phức có phần ảo âm phương trình z2 − (3 − 2i)z + − i = Khi tổng phần thực phần ảo z0 A -1 B -3 C D Câu 21 Kí hiệu z1 , z2 , z3 z4 bốn nghiệm phức phương trình z4 − z2 − 12 = Tính tổng T = |z1 | + |z√2 | + |z3 | + |z4 | √ √ B T = + C T = D T = + A T = Câu 22 Gọi z1 , z2 hai nghiệm phức phương trình 2(1+i)z2 −4(2−i)z−5−3i = TổngT = |z1 |2 +|z2 |2 bao nhiêu? √ 13 13 A T = B T = C T = D T = Câu 23 Biết z0 nghiệm phức có phần ảo dương phương trình z2 − 4z + 20 = Trên mặt phẳng tọa độ, điểm điểm biểu diễn số phức w = (1 + i)z0 − 2z0 ? A M3 (−2; 10) B M1 (6; 14) C M4 (6; −14) D M2 (2; −10) Câu 24 Biết z = + 2i nghiệm phức phương trình z2 + (m − 1)z + m − = (m tham số phức) Khi phần ảo m bao nhiêu? 7 A B C − D − 4 4 Câu 25 Hai số phức z1 = + i z2 = − 3i nghiệm phương trình sau đây? A z2 − (5 − 2i)z + − 7i = B z2 + (1 + 4i)z − + 7i = C z2 + (5 − 2i)z − + 7i = D z2 − (1 + 4i)z + − 7i = Câu 26 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (−1; 2) B (1; 0) C (0; 1) D (1; 2) 800π Gọi A B hai điểm thuộc Câu 27 Cho khối nón có đỉnh S , chiều cao thể tích đường tròn đáy cho AB = 12, khoảng cách từ tâm đường tròn đáy đến mặt phẳng (S AB) √ √ 24 A B C D 24 Trang 2/4 Mã đề 001 Câu 28 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: A y′ = xπ−1 B y′ = πxπ C y′ = πxπ−1 D y′ = xπ−1 π Câu 29 Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n4 = (1; 1; −1) B → n1 = (−1; 1; 1) C → n2 = (1; −1; 1) D → n3 = (1; 1; 1) Câu 30 Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC tam giác vuông cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a, thể tích khối lăng trụ cho √ √ √ √ 3 3 A C a B 2a a D a Câu 31 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (1; 3) B (0; 2) C (−∞; 1) D (3; +∞) Câu 32 Phần ảo số phức z = − 3i A B −3 C D −2 Câu 33 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trìnhlà: x = + 2t x = + 2t x=5+t x = + 2t y = −1 + 3t y = + 3t y = −1 + t y = + 2t A B C D z = −1 + t z = −1 + t z = −1 + 3t z = + 3t Câu 34 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ B P = C P = D P = A P = 2 Câu 35 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ D 13 A B C Câu 36 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = B P = 2016 C P = −2016 D P = Câu 37 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ B 10 C D A 15 Câu 38 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i D |z| = A |z| = B |z| = C |z| = z Câu 39 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| thức bằng? + |z|2 √ 1 A B C D 2 Câu 40 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | Câu 41 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = (|z| − 4)2 B P = |z|2 − C P = (|z| − 2)2 D P = |z|2 − Trang 3/4 Mã đề 001 2z − i Mệnh đề sau đúng? + iz A |A| > B |A| < C |A| ≤ D |A| ≥ → − −a = (−1; 1; 0), b = (1; 1; 0), → −c = (1; 1; 1) Trong Câu 43 Trong không gian Oxyz, cho ba véctơ → mệnh đề sau, mệnh đề sai? √ √ → − → → − → → − − −c = − A b ⊥ c B a = C b ⊥ a D → Câu 42 Cho số phức z thỏa mãn |z| ≤ ĐặtA = Câu 44 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox A (P) : x − 2y + = B (P) : y + z − = C (P) : y − z + = x+1 y z−2 = = Viết 1 D (P) : x − 2z + = Câu 45 Cho hình chóp S ABCD có đáy hình vng ABCD cạnh a, cạnh bên S A vng góc với mặt phẳng đáy Biết S A = 3a, tính thể tích V khối chóp S ABCD a3 A V = B V = a3 C V = 2a3 D V = 3a3 R3 R3 R3 Câu 46 Biết f (x)dx = g(x)dx = Khi [ f (x) + g(x)]dx A 2 B C D −2 B 6x6 + C C 30x4 + C D x6 + C R Câu 47 6x5 dxbằng A x6 + C Câu 48 Cho số phức z = a + bi (a, b ∈ R) thỏa mãn z + + 3i − z i = Tính S = 2a + 3b A S = −6 B S = C S = −5 D S = √ 2, OD = Câu 49 Cho hình chóp S.ABCD có đáy ABCD hình bình hành, cạnh AB = 2a, BC = 2a √ a Tam giác SAB nằm mặt phẳng vng góc với mặt phẳng đáy Gọi O giao điểm AC BD Tính khoảng cách d từ điểm O √ đến mặt phẳng (S AB) √ B d = a C d = 2a D d = a A d = a Câu 50 Cho tam giác nhọn ABC, biết quay tam giác quanh cạnh AB, BC, CA ta lần 3136π 9408π lượt hình trịn xoay tích 672π, , Tính diện tích tam giác ABC 13 A S = 1979 B S = 84 C S = 96 D S = 364 - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001