Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Trong không gian Oxyz, cho mặt cầu (S ) x2 + y2 + z2 − 2x − 2y + 4z − 1[.]
Kiểm tra LATEX ĐỀ KIỂM TRA THPT MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = −7 B m = C m = D m = Câu Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A B π C −1 D Câu Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x A − B C D 6 Câu Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 C ( ; +∞) D [ ; 2] [22; +∞) A ( ; 2] [22; +∞) B [22; +∞) 4 Câu Cho a > a , Giá trị alog a bằng? √ A B C D R Câu Biết f (u)du = F(u) + C Mệnh đề đúng? R R A f (2x − 1)dx = 2F(2x − 1) + C B f (2x − 1)dx = 2F(x) − + C R R C f (2x − 1)dx = F(2x − 1) + C D f (2x − 1)dx = F(2x − 1) + C Câu Cho hình trụ có hai đáy hai đường trịn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 = B = C = D = A V2 V2 V2 V2 Câu Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A B C D 2 R R Câu Cho hàm số f (x) liên tục R ( f (x) + 2x) = Tính f (x) √ A B −1 C −9 D Câu 10 Điểm M hình vẽ bên biểu thị cho số phức Khi số phức w = 4z A w = −8 − 12i B w = + 12i C w = −8 − 12i D w = −8 + 12i Câu 11 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y + z + = Khẳng định sau đúng? A (P) không cắt mặt cầu (S ) B (P) tiếp xúc mặt cầu (S ) C (P) qua tâm mặt cầu (S ) D (P) cắt mặt cầu (S ) Câu 12 Cho số phức z1 = − 4i; z2 = − i, phần ảo số phức z1 z2 A B −7 C D −1 Trang 1/4 Mã đề 001 Câu 13 Trên tập số phức, cho phương trình z2 + 2(m − 1)z + m + 2m = Có tham số m để phương trình cho có hai nghiệm phân biệt z1 ; z2 thõa mãn z1 + z2 = A B C D Câu 14 Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) N( 3; 2; −1) Đường thẳng MN có phương trình tham số A x = + ty = tz = + t B x = + ty = tz = − t C x = + 2ty = 2tz = + t D x = − ty = tz = + t R6 R6 R6 Câu 15 Nếu f (x) = g(x) = −4 ( f (x) + g(x)) A −2 B C D −6 y−6 z+2 x−2 = = Câu 16 Trong không gian Oxyz, cho hai đường thẳng chéo d1 : −2 x−4 y+1 z+2 d2 : = = Gọi mặt phẳng (P) chứa d1 (P)song song với đường thẳng d2 Khoảng −2 cách từ điểm M(1; 1; 1) đến (P) √ D 10 A √ B √ C √ 10 53 Câu 17 Tất bậc bốn tập số phức có tổng mơ-đun bao nhiêu? A B C D Câu 18 Cho phương trình bậc hai az2 + bz + c = (với a, b, c ∈ R) Xét tập số phức, khẳng định sau, đâu khẳng định sai? −b A Phương trình cho có tổng hai nghiệm a B Phương trình cho ln có nghiệm C Nếu ∆ = b2 − 4ac < phương trình vơ nghiệm c D Phương trình cho có tích hai nghiệm a Câu 19 Biết z = − 3i nghiệm phương trình z2 + az + b = ( với a, b ∈ R ) Khi hiệu a − b A −8 B 12 C D −12 Câu 20 Gọi z1 , z2 hai nghiệm phức phương trình 2(1+i)z2 −4(2−i)z−5−3i = TổngT = |z1 |2 +|z2 |2 bao nhiêu? √ 13 13 B T = C T = D T = A T = Câu 21 Tất bậc hai số phức z = 15 − 8i là: A − i −4 + i B − i + 3i C − 2i −5 + 2i D + i −4 + i Câu 22 Biết z = + 2i nghiệm phức phương trình z2 + (m − 1)z + m − = (m tham số phức) Khi phần ảo m bao nhiêu? 7 3 A − B C D − 4 4 Câu 23 Gọi M, N hai điểm biểu diễn số phức nghiệm phương trình z2 − 4z + 29 = Độ dài MN √ bao nhiêu? √ A MN = B MN = 10 C MN = 10 D MN = Câu 24 Kí hiệu z1 , z2 , z3 z4 bốn nghiệm phức phương trình z4 − z2 − 12 = Tính tổng T = |z1 | + |z2 | +√|z3 | + |z4 | √ √ A T = + B T = C T = D T = + Câu 25 Biết phương trình z2 + mz − m + = có hai nghiệm số ảo Khi tham số thực m gần giá trị giá trị sau? A −1 B −4 C D Trang 2/4 Mã đề 001 Câu 26 Trong không gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 45◦ B 90◦ C 60◦ D 30◦ Câu 27 Cho số phức z = + 9i, phần thực số phức z2 A 85 B −77 C 36 D Câu 28 Cho khối lập phương có cạnh Thể tích khối lập phương cho D A B C Câu 29 Cho hình chóp S ABC có đáy tam giác vng B, S A vng góc với đáy S A = AB (tham khảo hình bên) Góc hai mặt phẳng (S BC) (ABC) A 90◦ B 60◦ C 30◦ D 45◦ Câu 30 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = ( m tham số thực) Có giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn z1 + z2 = 2? A B C D Câu 31 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn số phức z thỏa mãn z + 2i = đường trịn Tâm đường trịn có tọa độ A (0; −2) B (2; 0) C (−2; 0) D (0; 2) x2 − 16 x2 − 16 < log7 ? Câu 32 Có số nguyên x thỏa mãn log3 343 27 A 184 B 193 C 186 D 92 Câu 33 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (−6; 7) B (7; −6) C (6; 7) D (7; 6) √ Câu 34 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 A < |z| < B ≤ |z| ≤ C |z| < D |z| > 2 2 Câu 35 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm R B điểm P bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm Q D điểm S Câu 36 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A 18 B C D √ 2 Mệnh đề Câu 37 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = đúng? √ A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = √2 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3 + z + z2 số thực Câu 38 Cho số phức z (không phải số thực, số ảo) thỏa mãn − z + z2 Khi mệnh đề sau đúng? 3 A < |z| < B < |z| < C < |z| < D < |z| < 2 2 2 √ √ √ 42 √ Câu 39 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z A < |z| < B < |z| < C < |z| < D < |z| < 2 Trang 3/4 Mã đề 001 Câu 40 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − hai nghiệm phức √ phương trình z2 + az + b = Tính T = |z1 | + |z2 | √ √ √ 85 97 C T = 13 A T = 13 B T = D T = 3 Câu 41 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | Câu 42 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z1 √ z2 √ A C D √ B 2 x+1 Câu 43 Đồ thị hàm số y = (C) có đường tiệm cận x−2 A y = −1 x = B y = x = C y = x = D y = x = −1 Câu 44 Cho tam giác nhọn ABC, biết quay tam giác quanh cạnh AB, BC, CA ta lần 3136π 9408π lượt hình trịn xoay tích 672π, , Tính diện tích tam giác ABC 13 A S = 96 B S = 364 C S = 1979 D S = 84 Câu 45 Cho hình chóp S ABCD có đáy hình vng ABCD cạnh a, cạnh bên S A vng góc với mặt phẳng đáy Biết S A = 3a, tính thể tích V khối chóp S ABCD a3 A V = a3 B V = C V = 3a3 D V = 2a3 √ Câu 46 Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức z thoả mãn z + − 8i = đường trịn có phương trình: √ B (x − 4)2 + (y + 8)2 = 20 A (x + 4)2 + (y − 8)2 = √ C (x + 4)2 + (y − 8)2 = 20 D (x − 4)2 + (y + 8)2 = Câu 47 Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1) Tìm điểm M cho 3MA2 + 2MB2 − MC đạt giá trị nhỏ 3 3 A M( ; ; −1) B M(− ; ; 2) C M(− ; ; −1) D M(− ; ; −1) 4 4 2 2 Câu 48 Trong không gian Oxyz, cho mặt cầu (S ) : (x + 1) + (y − 3) + (z + 2) = Mặt phẳng (P) tiếp xúc với mặt cầu (S ) điểm A(−2; 1; −4) có phương trình là: A 3x − 4y + 6z + 34 = B x − 2y − 2z − = C x + 2y + 2z + = D −x + 2y + 2z + = Câu 49 Cho hàm số y = f (x) xác định liên tục đoạn có [−2; 2] có đồ thị đường cong hình vẽ bên Điểm cực tiểu đồ thị hàm số y = f (x) A M(−2; −4) B M(1; −2) C x = D x = −2 −a = (4; −6; 2) Phương Câu 50 Cho đường thẳng ∆ qua điểm M(2; 0; −1) có véctơ phương → trình tham số đường thẳng ∆ A x = −2 + 2ty = −3tz = + t C x = + 2ty = −3tz = + t B x = + 2ty = −3tz = −1 + t D x = −2 + 4ty = −6tz = + 2t - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001