Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Tìm giá trị cực đại yCD của hàm số y = x3 − 12x + 20 A yCD = 52 B yCD =[.]
Kiểm tra LATEX ĐỀ KIỂM TRA THPT MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tìm giá trị cực đại yCD hàm số y = x − 12x + 20 A yCD = 52 B yCD = 36 C yCD = −2 D yCD = Câu Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; 1; 2) B I(1; 1; 2) C I(0; 1; −2) D I(0; −1; 2) R Câu Tính nguyên hàm cos 3xdx 1 A − sin 3x + C B sin 3x + C C sin 3x + C D −3 sin 3x + C 3 x−1 y+2 z Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x − y + 2z = B (P) : x + y + 2z = C (P) : x − 2y − = D (P) : x − y − 2z = √ x Câu Tìm nghiệm phương trình x = ( 3) A x = B x = −1 C x = D x = Câu Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề đúng? A Hàm số nghịch biến khoảng (1; +∞) B Hàm số đồng biến khoảng (−3; 1) C Hàm số nghịch biến khoảng (−3; 1) D Hàm số nghịch biến khoảng (−∞; −3) Câu Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 B ln − C − ln − D − ln A ln + 2 2 Câu Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 A B − C D 6 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) mặt phẳng (P) : 2x+2y−z+9 = Đường thẳng d qua A có vectơ phương ⃗u = (3; 4; −4) cắt (P) B Điểm M thay đổi (P) cho M ln nhìn đoạn AB góc 90o Khi độ dài MB lớn nhất, đường thẳng MB qua điểm điểm sau? A H(−2; −1; 3) B J(−3; 2; 7) C K(3; 0; 15) D I(−1; −2; 3) Câu 10 Cho khối lăng trụ đứng ABC.A′ B′C ′ √ có đáy ABC tam giác vng cân A,AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ a3 a3 a3 a3 A B C D 6 Câu 11 Thể tích khối hộp chữ nhật có kích thước a; 2a;3a A 2a3 B 6a3 C 6a2 D a3 Câu 12 Cho hàm số f (x) liên tục R Gọi F(x), G(x) hai nguyên hàm f (x) R thỏa mãn Re2 f (ln x) 2F(0) − G(0) = 1, F(2) − 2G(2) = F(1) − G(1) = −1 Tính 2x A −4 B −8 C −6 D −2 Trang 1/4 Mã đề 001 x−2 y x−1 = = điểm −1 A(2 ; ; 3) Toạ độ điểm A′ đối xứng với A qua đường thẳng d tương ứng 10 A ( ; − ; ) B ( ; − ; ) C (2 ; −3 ; 1) D ( ; − ; ) 3 3 3 3 √ √ a Câu 14 Cho hình chóp S ABCD có cạnh đáy a đường cao S H Tính góc mặt bên (S DC) mặt đáy A 60o B 45o C 30o D 90o Câu 13 Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : Câu 15 Thiết diện qua trục hình nón tam giác cạnh có độ dài a Tính diện tích tồn phần S hình nón A S = πa2 B S = πa2 C S = πa2 D S = πa2 4 Câu 16 Cho cấp số nhân (un ) với u1 = công bội q = −2 Số hạng thứ cấp số nhân A −384 B 192 C −192 D 384 Câu 17 Phương trình (2 − i)z + 3(1 + iz) = + 8i có nghiệm A z = −3 − i B z = − i C z = + i D z = −3 + i Câu 18 Biết z0 nghiệm phức có phần ảo dương phương trình z2 − 4z + 20 = Trên mặt phẳng tọa độ, điểm điểm biểu diễn số phức w = (1 + i)z0 − 2z0 ? A M2 (2; −10) B M1 (6; 14) C M3 (−2; 10) D M4 (6; −14) Câu 19 Biết z = + i z = nghiệm phương trình z3 + az2 + bz + c = (với a, b ∈ R ) Khi tổng a + b + c bao nhiêu? A B C D −2 Câu 20 Biết phương trình z2 + mz − m + = có hai nghiệm số ảo Khi tham số thực m gần giá trị giá trị sau? A B C −1 D −4 Câu 21 Gọi z1 , z2 hai nghiệm phức phương trình 2(1+i)z2 −4(2−i)z−5−3i = TổngT = |z1 |2 +|z2 |2 bao nhiêu? √ 13 13 A T = B T = C T = D T = Câu 22 Biết z số phức thỏa mãn z + 3z + = Khi mô-đun số phức w = z + ? √ √ √ √ B |w| = C |w| = 2 D |w| = A |w| = Câu 23 Biết x = nghiệm phương trình x2 + (m2 − 1)x − 8(m − 1) = (m tham số phức có phần ảo√âm) Khi đó, mơ-đun của√số phức w = m2 − 3m + i ? √ A |w| = 73 B |w| = C |w| = D |w| = Câu 24 Tất bậc bốn tập số phức có tổng mơ-đun bao nhiêu? A B C D Câu 25 Tổng nghịch đảo nghiệm phương trình z4 −z3 −2z2 +6z−4 = tập số phức 1 3 A B − C D − 2 2 Câu 26 Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho A πr2 l B πrl2 C πrl D 2πrl 3 R2 R2 Câu 27 Nếu f (x) = [ f (x) − 2] A B C D −2 Trang 2/4 Mã đề 001 Câu 28 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (0; 1) B (1; 0) C (1; 2) D (−1; 2) x2 − 16 x2 − 16 < log7 ? Câu 29 Có số nguyên x thỏa mãn log3 343 27 A 186 B 193 C 92 D 184 Câu 30 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (3; +∞) B (0; 2) C (−∞; 1) D (1; 3) Câu 31 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: D y′ = πxπ−1 A y′ = xπ−1 B y′ = πxπ C y′ = xπ−1 π Câu 32 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa độ A (1; −2; 3) B (1; 2; −3) C (−1; 2; 3) D (−1; −2; −3) Câu 33 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) A B C D 2 √ 2 Mệnh đề Câu 34 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = đúng? √ 2 A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3√ C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 Câu 35 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ B P = C P = D P = A P = 2 Câu 36 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z √ − 1| A P = −2016 B P = 2016 C P = D max T = Câu 37 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = (|z| − 2)2 B P = |z|2 − C P = (|z| − 4)2 D P = |z|2 − √ Câu 38 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 A |z| > B < |z| < C |z| < D ≤ |z| ≤ 2 2 Câu 39 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = −2016 B P = C P = 2016 D P = 2z − i Câu 40 Cho số phức z thỏa mãn |z| ≤ ĐặtA = Mệnh đề sau đúng? + iz A |A| ≥ B |A| < C |A| > D |A| ≤ z+1 Câu 41 Cho số phức z , thỏa mãn số ảo Tìm |z| ? z−1 A |z| = B |z| = C |z| = D |z| = 2 Câu 42 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B 18 C D Trang 3/4 Mã đề 001 Câu 43 Cho hàm số f (x) Biết f (0) = f ′ (x) = sin2 x + 1, ∀x ∈ R, π R4 f (x) π2 − π2 + 16π − 16 π2 + 16π − π2 + 15π B C D 16 16 16 16 Câu 44 Cho tam giác nhọn ABC, biết quay tam giác quanh cạnh AB, BC, CA ta lần 3136π 9408π lượt hình trịn xoay tích 672π, , Tính diện tích tam giác ABC 13 A S = 96 B S = 1979 C S = 84 D S = 364 y z−2 x+1 = = Viết Câu 45 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : 1 phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox A (P) : y + z − = B (P) : x − 2y + = C (P) : y − z + = D (P) : x − 2z + = A Câu 46 Cho hàm số y = f (x) xác định liên tục đoạn có [−2; 2] có đồ thị đường cong hình vẽ bên Điểm cực tiểu đồ thị hàm số y = f (x) A M(1; −2) B x = C x = −2 D M(−2; −4) √ Câu 47 Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức z thoả mãn z + − 8i = đường trịn có phương trình: √ B (x + 4)2 + (y − 8)2 = 20 A (x − 4)2 + (y + 8)2 = √ C (x − 4)2 + (y + 8)2 = 20 D (x + 4)2 + (y − 8)2 = Câu 48 Số phức z = − 2i có điểm biểu diễn mặt phẳng tọa độ M Tìm tọa độ điểm M A M(5; −2) B M(−5; −2) C M(−2; 5) D M(5; 2) x−1 y+2 z Câu 49 Đường thẳng (∆) : = = không qua điểm đây? −1 A (3; −1; −1) B (1; −2; 0) C (−1; −3; 1) D A(−1; 2; 0) x+1 (C) có đường tiệm cận Câu 50 Đồ thị hàm số y = x−2 A y = x = −1 B y = x = C y = x = D y = −1 x = - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001