Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Giá trị nhỏ nhất của hàm số y = x x2 + 1 trên[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 x Câu Giá trị nhỏ hàm số y = tập xác định x +1 1 B y = −1 C y = D y = − A y = R R R R 2 Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ 2a 3a 5a a A √ C D √ B 5 Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m ≤ B m > C m < D m ≥ Câu Cho mãn a > b > Kết luận√nào sau√ sai? √ √ √5 hai số thực a, bthỏa √5 a B e > eb C a− < b− D a > b A a < b Câu R5 Công thức sai? A R sin x = − cos x + C C cos x = sin x + C R B R a x = a x ln a + C D e x = e x + C Câu Cho < a , 1; < x , Đẳng thức sau sai? A loga x2 = 2loga x B loga (x − 2)2 = 2loga (x − 2) D aloga x = x C loga2 x = loga x Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = −2 B m = −15 C m = 13 D m = √ Câu Cho lăng trụ ABC.A√′ B′C ′ có đáy a, AA′ = 3a Thể tích khối√lăng trụ cho là: C a3 D 3a3 A 3a3 B 3a3 Câu Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; 6; 0) B (0; −2; 0) C (−2; 0; 0) D (0; 2; 0) x Câu 10 Giá trị nhỏ hàm số y = tập xác định x +1 1 A y = − B y = C y = D y = −1 R R R R 2 Câu 11 Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = [ 0; +∞) B S = [ -ln3; +∞) C S = (−∞; 2) D S = (−∞; ln3) Câu 12 Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (−2; −3; −1) B M ′ (−2; 3; 1) C M ′ (2; 3; 1) D M ′ (2; −3; −1) √ x Câu 13 Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H1) B (H2) C (H3) D (H4) Câu 14 Số nghiệm phương trình x + 5.3 x − = A B C D Trang 1/5 Mã đề 001 Câu 15 Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m ≥ B m > C m ≤ D m < Câu 16 Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 20a3 B 30a3 C 100a3 D 60a3 √ Câu 17 Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức z thoả mãn z + − 8i = đường trịn có phương trình: √ B (x − 4)2 + (y + 8)2 = 20 A (x + 4)2 + (y − 8)2 = √5 C (x − 4)2 + (y + 8)2 = D (x + 4)2 + (y − 8)2 = 20 Câu 18 Gọi S tập hợp tất giá trị tham số m để bất phương trình log3 (x2 − 5x + m) > log3 (x − 2) có tập nghiệm chứa khoảng (2; +∞) Tìm khẳng định A S = (−∞; 5] B S = (−∞; 4) C S = [6; +∞) D S = (7; +∞) Câu 19 Biết F(x) = x2 nguyên hàm hàm số f (x) R Giá trị R3 [1 + f (x)]dx 26 32 B C D 10 3 Câu 20 Cho hàm số y = f (x) có đạo hàm f ′ (x) = x2 − 2x, ∀x ∈ R Hàm số y = −2 f (x) đồng biến khoảng A (0; 2) B (−∞; −2) C (2; +∞) D (−2; 0) Câu 21 Tìm đạo hàm hàm số: y = (x + 1) 1 1 3 − A (2x) B 3x(x + 1) C (x + 1) D x 2 Câu 22 Tìm nguyên hàm hàm số f (x) = cos 3x R R sin 3x + C A cos 3xdx = sin 3x + C B cos 3xdx = − R R sin 3x C cos 3xdx = sin 3x + C D cos 3xdx = + C A Câu 23 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (−2; 3; 4) −n = (2; 3; −4) −n = (−2; 3; 1) −n = (2; −3; 4) A → B → C → D → Câu 24 Cho hàm số y = f (x) có bảng biến thiên sau : Hàm số cho đồng biến khoảng đây? A (−∞; 1) B (0; 1) C (1; +∞) D (−1; 0) Câu 25 Đồ thị hàm số sau có điểm cực trị: A y = x4 + 2x2 − B y = x4 − 2x2 − C y = 2x4 + 4x2 + D y = −x4 − 2x2 − x2 + 2x Câu 26 Khoảng cách hai điểm cực trị đồ thị hàm số y = là: x−1 √ √ √ √ A B C 15 D −2 x−3 y−6 z−1 Câu 27 Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 : = = −2 d2 : x = ty = −tz = (t ∈ R) Đường thẳng qua điểm A(0; 1; 1), vng góc với d1 cắt d2 có phương trình là: x y−1 z−1 x−1 y z−1 A = = B = = −1 −3 −1 −3 x y−1 z−1 x y−1 z−1 C = = D = = −1 −3 Trang 2/5 Mã đề 001 m Câu 28 Xác định tập tất giá trị tham số m để phương trình 2x + x − 3x − = − 2 có nghiệm phân biệt 19 A S = (−2; − ) ∪ ( ; 7) B S = (−3; −1) ∪ (1; 2) 4 19 19 C S = (−5; − ) ∪ ( ; 6) D S = (−2; − ) ∪ ( ; 6) 4 4 Câu 29 Tính diện tích hình phẳng giới hạn đồ thị (C) hàm số y = x2 − 4x + 5, tiếp tuyến A(1; 2) tiếp tuyến B(4; 5) đồ thị (C) B C D A 4 4 Câu 30 Cho hình chóp S ABCD có cạnh đáy a Gọi M, N trung điểm SA BC o Biết góc √ MN mặt phẳng √ (ABCD) 60 Tính sin góc MN và√mặt phẳng (S BD) 10 A B C D 5 Câu 31 Cho hình chóp S ABCcó S A vng góc với mặt phẳng (ABC), S A = a, AB = a, AC = 2a, d = 600 Tính thể tích khối cầu ngoại tiếp hình chóp S ABC BAC √ √ √ 5π 5 20 5πa3 B V = a C V = πa D V = πa3 A V = 6 Câu 32 Một bình đựng nước dạng hình nón (khơng có đáy), đựng đầy nước Người ta thả vào khối cầu có đường kính chiều cao bình nước đo thể tích nước tràn ngồi 18π (dm3) Biết khối cầu tiếp xúc với tất đường sinh hình nón nửa khối cầu chìm nước Tính thể tích nước cịn lại bình A 24π(dm3 ) B 12π(dm3 ) C 54π(dm3 ) D 6π(dm3 ) Câu 33 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 B C D A 12 3x Câu 34 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = B m = C m = −2 D Không tồn m Câu 35 Cho tứ diện DABC, tam giác ABC vng B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, hình chóp DABC có bán √ kính √ BC = 4a, DA = 5a Bán√kính mặt cầu ngoại tiếp √ 5a 5a 5a 5a A B C D 2 3 Câu 36 Trong khơng gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + √ z2 − 4x − 6y + 2z − = √ A R = 15 B R = C R = D R = 14 Câu 37 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D √ Câu 38 Tính đạo hàm hàm số y = log4 x2 − x x x A y′ = B y′ = C y′ = D y′ = √ (x − 1) ln 2(x − 1) ln (x − 1)log4 e x2 − ln Câu 39 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng ′ ′ ′ (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính √ thể tích khối lăng trụ √ABC.A B C √ 3 B 9a C 4a D 6a3 A 3a Trang 3/5 Mã đề 001 x2 + mx + Câu 40 Tìm tất giá trị tham số m để hàm số y = đạt cực tiểu điểm x = x+1 A m = B m = −1 C m = D Khơng có m Câu 41 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + 3mn + n + A log2 2250 = B log2 2250 = n n 2mn + n + 2mn + 2n + C log2 2250 = D log2 2250 = n m Câu 42 Cho hàm số f (x) liên tục R Gọi F(x), G(x) hai nguyên hàm f (x) R thỏa mãn Re2 f (ln x) 2F(0) − G(0) = 1, F(2) − 2G(2) = F(1) − G(1) = −1 Tính 2x A −4 B −6 C −2 D −8 C y′ = x ln D y′ = Câu 43 Tính đạo hàm hàm số y = x A y′ = x B y′ = x.5 x−1 5x ln Câu 44 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 27 B 18 C 12 D 21 Câu 45 Cho khối lăng trụ đứng ABC.A′ B′C ′ √ có đáy ABC tam giác vng cân A,AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ 3 a a a3 a3 A B C D 6 ax + b có đồ thị đường cong hình vẽ bên Tọa độ giao điểm đồ thị cx + d hàm số cho trục hoành Câu 46 Cho hàm số y = A (0 ; 3) B (2 ; 0) C (3; ) D (0 ; −2) Câu 47 Cho số phức z1 = − 4i; z2 = − i, phần ảo số phức z1 z2 A B −1 C D −7 Câu 48 Trong không gian Oxyz, cho mặt cầu (S ) có tâm I(−1; −4; 2) điểmM(1; 2; 2)thuộc mặt cầu Phương trình (S ) A (x + 1)2 + (y + 4)2 + (z − 2)2 = 40 C (x − 1)2 + (y − 4)2 + (z + 2)2 = 40 B (x − 1)2 + (y − 4)2 + (z + 2)2 = 10 √ D (x + 1)2 + (y + 4)2 + (z − 2)2 = 40 1 Câu 49 Cho hàm số f (x) = − x3 + (2m + 3)x2 − (m2 + 3m)x + tham số m thuộc [−9; 9] để hàm số nghịch biến khoảng (1; 2)? A B C Có giá trị nguyên D 16 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001