Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho lăng trụ đều ABC A′B′C′ có đáy bằng a, AA[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 √ Câu Cho lăng trụ ABC.A′ B′C ′ có đáy a, AA√′ = 3a Thể tích khối√lăng trụ cho là: D 3a3 A a3 B 3a3 C 3a3 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; −5; 0) B (0; 5; 0) C (0; 0; 5) D (0; 1; 0) Câu Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (−2; 3; 1) B M ′ (2; −3; −1) C M ′ (2; 3; 1) D M ′ (−2; −3; −1) Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ 3a 5a a 2a A √ B C D √ 5 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 C C(6; 21; 21) D C(6; −17; 21) A C(20; 15; 7) B C(8; ; 19) Câu Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; 2; 0) B (0; −2; 0) C (−2; 0; 0) D (0; 6; 0) Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A 4πR3 B πR3 C 2πR3 D 6πR3 Câu 8.√ Bất đẳng thức √ πsau đúng? e A ( √3 − 1) < ( √3 − 1) π e C ( + 1) > ( + 1) B 3π < 2π D 3−e > 2−e Câu Hàm √ số sau√đây đồng biến R? A y = x2 + x + − x2 − x + C y = x4 + 3x2 + B y = x2 D y = tan x Câu 10 Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x2 − 2x + B y = x3 C y = −x4 + 3x2 − D y = x3 − 2x2 + 3x + Câu 11 Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số đồng biến R B Hàm số đồng biến (−∞; 0) ∪ (0; +∞) C Hàm số nghịch biến R D Hàm số nghịch biến (0; +∞) → − Câu 12 Trong hệ tọa độ Oxyz cho u (2; −2; 1), kết luận sau đúng? √ không gian với→ → − − −u | = −u | = A | u | = B | u | = C |→ D |→ Câu 13 Trong không gian với hệ tọa độ Oxyz cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài A x = + 2ty = + tz = − 4t B x = + 2ty = + tz = C x = + 2ty = + tz = D x = + ty = + 2tz = Trang 1/5 Mã đề 001 Câu R14 Công thức sai? A R a x = a x ln a + C C e x = e x + C R B R sin x = − cos x + C D cos x = sin x + C Câu 15 Bất đẳng thức sau đúng? √ √ π e A 3−e > 2−e B ( √3 + 1) > ( √ + 1) e π C 3π < 2π D ( − 1) < ( − 1) Rm dx Câu 16 Cho số thực dươngm Tính I = theo m? x + 3x + m+1 2m + m+2 m+2 A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) m+2 m+2 m+1 2m + x+1 Câu 17 Đồ thị hàm số y = (C) có đường tiệm cận x−2 A y = x = B y = −1 x = C y = x = −1 D y = x = Câu 18 Một hộp chứa sáu cầu trắng bốn cầu đen Lấy ngẫu nhiên đồng thời bốn Tính xác suất cho có màu trắng 1 209 B C D A 210 105 210 21 3 R R R Câu 19 Biết f (x)dx = g(x)dx = Khi [ f (x) + g(x)]dx 2 A −2 B C D x−1 y+2 z Câu 20 Đường thẳng (∆) : = = không qua điểm đây? −1 A (−1; −3; 1) B A(−1; 2; 0) C (3; −1; −1) D (1; −2; 0) Câu 21 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (−2; 3; 4) −n = (−2; 3; 1) −n = (2; −3; 4) −n = (2; 3; −4) A → B → C → D → Câu 22 Hàm số y = (x + m)3 + (x + n)3 − x3 đồng biến khoảng (−∞; +∞) Giá trị nhỏ biểu thức P = 4(m2 + n2 ) − m − n −1 A B C −16 D 16 √ Câu 23 Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức z thoả mãn z + − 8i = đường trịn có phương trình: A (x − 4)2 + (y + 8)2 = 20 B (x + 4)2 + (y − 8)2 = 20 √ √ C (x − 4)2 + (y + 8)2 = D (x + 4)2 + (y − 8)2 = Câu 24 Đường cong hình bên đồ thị hàm số đây? A y = −x4 + 2x2 + B y = x3 − 3x2 + C y = x4 − 2x2 + D y = −x3 + 3x2 + Câu 25 Một công ty chuyên sản xuất gỗ muốn thiết kế thùng đựng hàng có dạng hình lăng trụ tứ giác khơng nắp, tích 62,5dm3 Để tiết kiệm vật liệu làm thùng, người ta cần thiết kế thùng cho tổng S diện tích xung quanh diện tích mặt đáy nhỏ nhất, S √ A 75dm2 B 106, 25dm2 C 125dm2 D 50 5dm2 √ Câu 26 Cho hình chóp S ABC có S A⊥(ABC), S A = a Tam giác ABC vuông cân B, AC = 2a Thể tích√khối chóp S ABC √ √ √ a3 2a3 a3 A B C D a3 3 Câu 27 Cho a > 1, a , Tìm mệnh đề mệnh đề sau: A loga x có nghĩa với ∀x ∈ R B loga = a loga a = C loga (xy) = loga x.loga y D loga xn = log x , (x > 0, n , 0) an Trang 2/5 Mã đề 001 Câu 28 Một thùng đựng nước có dạng hình trụ có chiều cao h bán kính đáy√bằng R Khi đặt thùng R nước nằm ngang hình khoảng cách từ trục hình trụ tới mặt nước (mặt nước thấp trục hình trụ) Khi đặt thùng nước thẳng đứng hình chiều cao mực nước thùng h1 h1 Tính tỉ số h √ √ √ √ 2π − π− 2π − 3 B C D A 12 12 √3 a2 b Câu 29 Biết loga b = 2, loga c = với a, b, c > 0; a , Khi giá trị loga ( ) c B − C D A 3 x −2x +3x+1 Câu 30 Cho hàm số f (x) = e Mệnh đề đúng? A Hàm số nghịch biến khoảng (−∞; 1) (3; +∞) B Hàm số đồng biến khoảng(−∞; 1) nghịch biến khoảng(3; +∞) C Hàm số đồng biến khoảng (−∞; 1) (3; +∞) D Hàm số nghịch biến khoảng(−∞; 1) đồng biến khoảng(3; +∞) √ x− x+2 có tất tiệm cận? Câu 31 Đồ thị hàm số y = x2 − A B C D x + 2x Câu 32 Khoảng cách hai điểm cực trị đồ thị hàm số y = là: x−1 √ √ √ √ B −2 C D A 15 x2 Câu 33 Tính tích tất nghiệm phương trình (log2 (4x))2 + log2 ( ) = 8 1 1 A B C D 128 32 64 Câu 34 Tìm tất giá trị tham số m để hàm số y = mx + mx − x + nghịch biến R A m > −2 B −3 ≤ m ≤ C −4 ≤ m ≤ −1 D m < Câu 35 Chọn mệnh đề mệnh đề sau: R R (2x + 1)3 A (2x + 1) dx = +C B sin xdx = cos x + C R R e2x x x C dx =5 + C D e2x dx = + C Câu 36 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai MN S C √ cạnh AB, AD Tính khoảng √ √ √ cách hai đường thẳng a 15 3a 30 3a 3a A B C D 10 d Câu 37 Cho hình chóp S ABC có đáy ABC √ tam giác vng A; BC = 2a; ABC = 60 Gọi Mlà trung điểm √ cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng √ (ABC) B a C 2a D a A a Câu 38 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + 3mn + n + A log2 2250 = B log2 2250 = n n 2mn + 2n + 2mn + n + C log2 2250 = D log2 2250 = m n Câu 39 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ ABC.A′ B′C ′ Trang 3/5 Mã đề 001 √ A 3a3 √ B 9a3 √ C 4a3 √ D 6a3 Câu 40 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 3a3 B 6a3 C 12a3 D 4a3 Câu 41 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = m = −10 B m = m = −16 C m = D m = Câu 42 Tổng tất nghiệm phương trình log2 (6 − x ) = − x A B C D x−2 y x−1 = = điểm −1 A(2 ; ; 3) Toạ độ điểm A′ đối xứng với A qua đường thẳng d tương ứng 10 A ( ; − ; ) B ( ; − ; ) C ( ; − ; ) D (2 ; −3 ; 1) 3 3 3 3 Câu 43 Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : Câu 44 Có cặp số nguyên (x; y) thỏa mãn log4 (9x2 + 16y2 + 112y) + log3 (9x2 + 16y2 ) < log4 y + log3 (684x2 + 1216y2 + 720y)? A 76 B 64 C 48 D 56 Câu 45 Thiết diện qua trục hình nón tam giác cạnh có độ dài a Tính diện tích tồn phần S hình nón B S = πa2 A S = πa2 C S = πa2 D S = πa2 Câu 46 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực đại đồ thị hàm số cho có tọa độ A (−1; −4) B (0; −3) C (−3; 0) D (1; −4) Câu 47 Cho hàm số f (x) liên tục R Gọi F(x), G(x) hai nguyên hàm f (x) R thỏa mãn Re2 f (ln x) 2F(0) − G(0) = 1, F(2) − 2G(2) = F(1) − G(1) = −1 Tính 2x A −6 B −8 C −4 D −2 Câu 48 Họ tất nguyên hàm hàm số f (x) = 5x4 + cos x A 5x5 + sin x + C Câu 49 Biết A f (x) = − R B x5 + sin x + C C 5x5 − sin x + C D x5 − sin x + C f (x)dx = sin 3x + C Mệnh đề sau mệnh đề đúng? cos 3x B f (x) = −3 cos 3x C f (x) = cos 3x D f (x) = cos 3x Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001