Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Giá trị nhỏ nhất của hàm số y = x x2 + 1 trên[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 x tập xác định +1 1 B y = −1 C y = − D y = R R R 2 Câu Giá trị nhỏ hàm số y = A y = R x2 Câu Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = (−∞; 2) B S = (−∞; ln3) C S = [ -ln3; +∞) D S = [ 0; +∞) Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x2 − 2x + B y = −x4 + 3x2 − C y = x − 2x + 3x + D y = x3 A I = ln( m+2 ) m+1 Rm dx theo m? + 3x + m+1 2m + B I = ln( ) C I = ln( ) m+2 m+2 Câu Cho số thực dươngm Tính I = x2 D I = ln( m+2 ) 2m + Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) √ √ bao nhiêu? A R = 29 B R = 21 C R = D R = Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài nhất? A x = + 2ty = + tz = B x = + 2ty = + tz = − 4t C x = + ty = + 2tz = D x = + 2ty = + tz = đúng? x B Hàm số đồng biến (−∞; 0) ∪ (0; +∞) D Hàm số nghịch biến R Câu Kết luận sau tính đơn điệu hàm số y = A Hàm số nghịch biến (0; +∞) C Hàm số đồng biến R Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(8; ; 19) B C(20; 15; 7) C C(6; −17; 21) D C(6; 21; 21) p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < y < −3 B Nếu < x < π y > − 4π2 C Nếux > thìy < −15 D Nếux = y = −3 Câu 10 Cho√ hai số thực a, bthỏa mãn a > b > Kết luận sau sai? √ √ √ √5 √ 2 a b − − B e > e C a b Câu 11 Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (−2; −3; −1) B M ′ (2; −3; −1) C M ′ (−2; 3; 1) D M ′ (2; 3; 1) Trang 1/5 Mã đề 001 Câu 12 Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ a 5a 2a 3a A √ C √ B D 5 Câu 13 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; 2) B (−2; −1; 2) C (−2; 1; 2) D (2; −1; −2) Câu 14 Số nghiệm phương trình x + 5.3 x − = A B C D Câu 15 Cho < a , 1; < x , Đẳng thức sau sai? A aloga x = x B loga x2 = 2loga x C loga2 x = loga x D loga (x − 2)2 = 2loga (x − 2) −u (2; −2; 1), kết luận sau đúng? Câu 16 Trong không gian với hệ tọa độ Oxyz cho → −u | = −u | = −u | = √3 −u | = A |→ B |→ C |→ D |→ Câu 17 Cho số phức z = a + bi (a, b ∈ R) thỏa mãn z + + 3i − z i = Tính S = 2a + 3b A S = −5 B S = −6 C S = D S = Câu 18 Cho cấp số nhân (un ) với u1 = − ; u7 = −32 Tìm q? D q = ±1 A q = ±4 B q = ±2 C q = ± Câu 19 Cho hàm số có bảng biến thiên: Khẳng định sau đúng? A Hàm số đạt cực đại B Hàm số đạt cực đại C Hàm số đạt cực đại D Hàm số đạt cực đại Câu 20 Cho số phức z = (1 + i)2 (1 + 2i) Số phức z có phần ảo A B 2i C −4 D Câu 21 Cho hàm số y = f (x) xác định liên tục đoạn có [−2; 2] có đồ thị đường cong hình vẽ bên Điểm cực tiểu đồ thị hàm số y = f (x) A M(1; −2) B M(−2; −4) C x = D x = −2 Câu 22 Cần chọn người cơng tác từ tổ có 30 người, số cách chọn A 10 B A330 C 330 D C30 Câu 23 Cho hình phẳng D giới hạn đường y = (x − 2)2 , y = 0, x = 0, x = Khối tròn xoay tạo thành quay D quạnh trục hồnh tích V bao nhiêu? 32 32 32π A V = B V = 32π C V = D V = 5π Câu 24 Tập nghiệm bất phương trình log3 (10 − x+1 ) ≥ − x chứa số nguyên A B C Vô số D Câu 25 Cho tam giác ABC vng A, AB = a, BC = 2a Tính thể tích khối nón nhận quay tam giác ABC quanh trục AB √ √ πa3 3 A πa B C 3πa3 D πa3 Câu 26 Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2) Đường phân giác góc A tam giác ABC cắt mặt phẳng (P) : x + y + z − = điểm điểm sau đây: A (−2; 3; 5) B (1; −2; 7) C (−2; 2; 6) D (4; −6; 8) Trang 2/5 Mã đề 001 Câu 27 Tìm tất giá trị tham số m để đồ thị hàm số y = hai điểm cực trị nằm phía bên phải trục tung? A m < B m > C m > 3 x − (m − 2)x2 + (m − 2)x + m2 có 3 D m > m < Câu 28 Cho hình trụ (T ) có chiều cao bán kính 3a Một hình vng ABCD có hai cạnh AB, CD hai dây cung hai đường tròn đáy, cạnh AD, BC khơng phải đường sinh hình trụ√(T ) Tính cạnh hình vng √ 3a 10 B 3a C 6a D 3a A Câu 29 Tính diện tích hình phẳng giới hạn đồ thị (C) hàm số y = x2 − 4x + 5, tiếp tuyến A(1; 2) tiếp tuyến B(4; 5) đồ thị (C) A B C D 4 4 √ x− x+2 Câu 30 Đồ thị hàm số y = có tất tiệm cận? x2 − A B C D Câu 31 Lăng trụ ABC.A′ B′C ′ có đáy tam giác cạnh a Hình chiếu vng góc A′ lên (ABC) trung điểm BC Góc cạnh bên mặt phẳng đáy 600 Khoảng cách từ C ′ đến mp (ABB′ A′ ) √ √ √ √ a 3a 13 3a 13 3a 10 B C D A 20 26 13 Câu 32 Cho hình chóp S.ABC có đáy ABC tam giác vng cân với BA = BC = a, S A = a vng góc với √ mặt phẳng đáy Tính cơsin góc hai mặt phẳng √ √ (SAC) (SBC) bằng? A B C D 2 Câu 33 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình √ nón đỉnh S đáy hình√trịn nội tiếp tứ giác ABCD √ √ 2 πa 17 πa 15 πa 17 πa2 17 A B C D Câu 34 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai MN S C √ cạnh AB, AD Tính khoảng √ √ √ cách hai đường thẳng a 15 3a 30 3a 3a A B C D 10 r 3x + Câu 35 Tìm tập xác định D hàm số y = log2 x−1 A D = (−1; 4) ———————————————– B D = (−∞; −1] ∪ (1; +∞) C D = (−∞; 0) D D = (1; +∞) Câu 36 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc với mặt phẳng (ABC), diện tích tam giác S BC a Tính thể tích khối √ √ √ √ chóp S ABC 3 3 a 15 a a 15 a 15 A B C D 16 Câu 37 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 23 25 29 27 B C D A 4 4 Trang 3/5 Mã đề 001 Câu 38 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −2 B C −4 D Câu 39 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ√ABC.A′ B′C ′ √ √ B 9a3 C 6a3 D 4a3 A 3a3 Câu 40 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ = 2a Gọi α số đo góc hai đường thẳng AC DB′ Tính giá trị cos α √ √ √ 3 B C D A 2 Câu 41 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRl + πR2 B S = πRl + 2πR2 C S = 2πRl + 2πR2 D S = πRh + πR2 Câu 42 Trong không gian Oxyz, cho mặt phẳng (P) : x − 3y + 5z − = Điểm thuộc mặt phẳng (P)? A Q(4 ; ; 2) B P(4 ; −1 ; 3) C M(0 ; ; 2) D N(1 ; ; 7) ax + b có đồ thị đường cong hình vẽ bên Tọa độ giao điểm đồ thị cx + d hàm số cho trục hoành A (2 ; 0) B (3; ) C (0 ; −2) D (0 ; 3) 2 Câu 44 Cho hàm số f (x) = − x + (2m + 3)x − (m + 3m)x + Có giá trị nguyên 3 tham số m thuộc [−9; 9] để hàm số nghịch biến khoảng (1; 2)? A B C 16 D Câu 43 Cho hàm số y = − → Câu 45 Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → n→ Góc hai mặt phẳng (P) (Q) Q Biết cosin góc hai vectơ nP nQ − ◦ ◦ A 30 B 90 C 60◦ D 45◦ Câu 46 Cho hàm số f (x) liên tục R R2 ( f (x) + 2x) = Tính A Câu 47 Nếu B −1 R6 A −2 f (x) = R6 g(x) = −4 B −6 f (x) C R6 R2 D −9 ( f (x) + g(x)) C D Câu 48 Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) N( 3; 2; −1) Đường thẳng MN có phương trình tham số A x = + 2ty = 2tz = + t B x = + ty = tz = + t C x = − ty = tz = + t D x = + ty = tz = − t Câu 49 Tính thể tích V khối trịn xoay quay hình phẳng giới hạn đồ thị (C) : y = − x2 trục hoành quanh trục Ox 7π 22π 512π A V = B V = C V = D V = 15 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001