Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho a > 1; 0 < x < y Bất đẳng thức nào sau đâ[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho a > 1; < x < y Bất đẳng thức sau đúng? B ln x > ln y C log x > log y A log x > log y D loga x > loga y a a Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ a 3a 2a 5a A √ B C √ D 5 Câu Hàm số sau đồng biến R? A y = x2 B y = tan √ x √ C y = x + 3x + D y = x2 + x + − x2 − x + Câu Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (−2; 3; 1) B M ′ (2; −3; −1) C M ′ (2; 3; 1) D M ′ (−2; −3; −1) Câu Cho hìnhqchóp S ABCcó cạnh đáy a cạnh bên b Thể tích khối chóp là: √ √ a2 b2 − 3a2 a2 3b2 − a2 B VS ABC = A VS ABC = √ 12 √ 12 3a b 3ab2 C VS ABC = D VS ABC = 12 12 Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường tròn B Đường parabol C Đường hypebol D Đường elip Câu Hình nón có bán kính đáy √ R, đường sinh l diện√tích xung quanh C 2π l2 − R2 D 2πRl A πRl B π l2 − R2 Câu Cho < a , 1; < x , Đẳng thức sau sai? A loga2 x = loga x B loga (x − 2)2 = 2loga (x − 2) C loga x2 = 2loga x D aloga x = x Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường parabol B Đường elip C Đường tròn D Đường hypebol Câu 10 Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A m ∈ (0; 2) B m ∈ (−1; 2) C m ≥ D −1 < m < Câu 11 thức sau đúng? √ Bất đẳng √ e π π B 3√ < 2π A ( − 1) < ( − 1) √ π e C 3−e > 2−e D ( + 1) > ( + 1) Câu 12 Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số đồng biến R B Hàm số đồng biến (−∞; 0) ∪ (0; +∞) C Hàm số nghịch biến R D Hàm số nghịch biến (0; +∞) Câu 13 Cho√ hai số thực a, bthỏa mãn sau sai? √ √ √ √5 a > b > Kết luận √5 2 − − A a > b B a < b C a eb Trang 1/5 Mã đề 001 Câu 14 Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 √ x Câu 15 Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H4) B (H1) C (H3) D (H2) Câu 16 Một mặt cầu có diện tích 4πR2 thể tích khối cầu A πR3 B πR3 C πR3 D 4πR3 Câu 17 Trong không gian Oxyz, cho mặt cầu (S ) : (x + 1)2 + (y − 3)2 + (z + 2)2 = Mặt phẳng (P) tiếp xúc với mặt cầu (S ) điểm A(−2; 1; −4) có phương trình là: A x + 2y + 2z + = B −x + 2y + 2z + = C 3x − 4y + 6z + 34 = D x − 2y − 2z − = z x−1 y+2 = = không qua điểm đây? Câu 18 Đường thẳng (∆) : −1 A A(−1; 2; 0) B (−1; −3; 1) C (1; −2; 0) D (3; −1; −1) Câu 19 Số phức z = − 2i có điểm biểu diễn mặt phẳng tọa độ M Tìm tọa độ điểm M A M(5; −2) B M(−2; 5) C M(5; 2) D M(−5; −2) → − −a = (−1; 1; 0), b = (1; 1; 0), → −c = (1; 1; 1) Trong Câu 20 Trong không gian Oxyz, cho ba véctơ → mệnh đề sau, mệnh đề sai? √ → √ → − − → − − − −a = A c = B → C b ⊥→ a D b ⊥→ c Câu 21 Cho hàm số y = f (x) có đạo hàm f ′ (x) = x2 − 2x, ∀x ∈ R Hàm số y = −2 f (x) đồng biến khoảng A (−∞; −2) B (−2; 0) C (0; 2) D (2; +∞) Câu 22 Với a số thực dương tùy ý, log5 (5a) A + log5 a B − log5 a C + log5 a D − log5 a Câu 23 Tìm tất giá trị thực tham số mđể hàm số y = (m + 1)x4 − mx2 + có cực tiểu mà khơng có cực đại A −1 ≤ m < B m > C −1 ≤ m ≤ D m < −1 Câu 24 Cho hình phẳng D giới hạn đường y = (x − 2)2 , y = 0, x = 0, x = Khối tròn xoay tạo thành quay D quạnh trục hồnh tích V bao nhiêu? 32 32π 32 A V = B V = C V = D V = 32π 5 5π Câu 25 Cho a > 1, a , Tìm mệnh đề mệnh đề sau: A loga xn = log x , (x > 0, n , 0) B loga = a loga a = an C loga (xy) = loga x.loga y D loga x có nghĩa với ∀x ∈ R Câu 26 Cho hình chóp S ABCcó S A vng góc với mặt phẳng (ABC), S A = a, AB = a, AC = 2a, d = 600 Tính thể tích khối cầu ngoại tiếp hình chóp S ABC BAC √ √ √ 20 5πa3 5 5π A V = B V = πa C V = a D V = πa3 6 (2 ln x + 3) Câu 27 Họ nguyên hàm hàm số f (x) = : x (2 ln x + 3)4 (2 ln x + 3)2 (2 ln x + 3)4 ln x + A + C B + C C + C D + C 2 8 √ Câu 28 Cho hình chóp tứ giác S ABCD có đáy hình vng cạnh a 2, tam giác S AB vuông cân S mặt phẳng (S AB) vng√góc với mặt phẳng đáy √ Khoảng cách từ A đến mặt √ phẳng (S CD) √ a a 10 a A a B C D Trang 2/5 Mã đề 001 Câu 29 Trong không gian với hệ tọa độ Oxyz, cho A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0) Bán kính đường√trịn nội tiếp tam giác ABC √ √ √ B C D A Câu 30 Một công ty chuyên sản xuất gỗ muốn thiết kế thùng đựng hàng có dạng hình lăng trụ tứ giác khơng nắp, tích 62,5dm3 Để tiết kiệm vật liệu làm thùng, người ta cần thiết kế thùng cho√tổng S diện tích xung quanh diện tích mặt đáy nhỏ nhất, S A 50 5dm2 B 125dm2 C 75dm2 D 106, 25dm2 x2 + 2x là: Câu 31 Khoảng cách hai điểm cực trị đồ thị hàm số y = x−1 √ √ √ √ A 15 B C −2 D x −2x +3x+1 Câu 32 Cho hàm số f (x) = e Mệnh đề đúng? A Hàm số nghịch biến khoảng(−∞; 1) đồng biến khoảng(3; +∞) B Hàm số đồng biến khoảng (−∞; 1) (3; +∞) C Hàm số nghịch biến khoảng (−∞; 1) (3; +∞) D Hàm số đồng biến khoảng(−∞; 1) nghịch biến khoảng(3; +∞) Câu 33 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể √ √ √ √ tích khối trụ (T ) lớn 500π 125π 250π 400π B C D A 9 Câu 34 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = 2 2 C (x − 1) + (y + 2) + (z − 4) = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 35 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B −4 C D −2 Câu 36 Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm A(1; 2; 3) −n (2; 1; −4) có véc tơ pháp tuyến → A 2x + y − 4z + = B 2x + y − 4z + = C −2x − y + 4z − = D 2x + y − 4z + = Câu 37 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ√ABC.A′ B′C ′ √ √ B 6a3 C 9a3 D 4a3 A 3a3 R ax + b 2x Câu 38 Biết a, b ∈ Z cho (x + 1)e2x dx = ( )e + C Khi giá trị a + b là: A B C D Câu 39 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B −3 C D cos x π F(− ) = π Khi giá trị Câu 40 Biết hàm F(x) nguyên hàm hàm f (x) = sin x + cos x F(0) bằng: 3π 6π 6π 6π A ln + B ln + C ln + D 5 5 Câu 41 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x + x, trục Oxvà hai đường thẳng x = −1; x = 23 25 29 27 A B C D 4 4 Trang 3/5 Mã đề 001 Câu 42 Thiết diện qua trục hình nón tam giác cạnh có độ dài a Tính diện tích tồn phần S hình nón A S = πa2 B S = πa2 C S = πa2 D S = πa2 x−2 y−6 z+2 Câu 43 Trong không gian Oxyz, cho hai đường thẳng chéo d1 : = = −2 x−4 y+1 z+2 = = Gọi mặt phẳng (P) chứa d1 (P)song song với đường thẳng d2 Khoảng d2 : −2 cách từ điểm M(1; 1; 1) đến (P) A √ 53 B √ 10 C √ 10 D √ Câu 44 Cân phân công ban tư môt tô 10 ban đê lam trưc nhât Hoi co cach phân công khac A C10 C 103 B A310 D 310 Câu 45 Tổng tất nghiệm phương trình log2 (6 − x ) = − x A B C D Câu 46 Tính thể tích V khối trịn xoay quay hình phẳng giới hạn đồ thị (C) : y = − x2 trục hoành quanh trục Ox A V = B V = 22π C V = 7π D V = 512π 15 Câu 47 Cho hàm số y = f (x) có đồ thị y = f ′ (3 − 2x) hình vẽ sau: Có giá trị nguyên tham số m ∈ [−2021; 2021] để hàm số g(x) = f ( x3 + 2021x + m) có điểm cực trị? A 2019 B 2021 C 2022 D 2020 Câu 48 Cho hàm số f (x) liên tục R Gọi F(x), G(x) hai nguyên hàm f (x) R thỏa mãn Re2 f (ln x) 2F(0) − G(0) = 1, F(2) − 2G(2) = F(1) − G(1) = −1 Tính 2x A −8 B −2 C −6 D −4 Câu 49 Cho khối chóp S ABCD có đáy ABCD hình vng với AB = a, S A⊥(ABCD) S A = 2a Thể tích khối chóp cho A a3 B 2a3 C 6a3 D 2a3 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001