Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hàm số y = ax + b cx + d có đồ thị như hì[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho hàm số y = A ad > ax + b có đồ thị hình vẽ bên Kết luận sau sai? cx + d B ab < C ac < D bc > Câu Hàm số sau đồng biến R? A y = tan x C y = x2 √ √ B y = x2 + x + − x2 − x + D y = x4 + 3x2 + Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x −1+ B y = − A y = ln ln 5 ln ln x x C y = + D y = +1− ln 5 ln ln −u (2; −2; 1), kết luận sau đúng? Câu Trong không gian với hệ tọa độ Oxyz cho → √ −u | = −u | = −u | = −u | = B |→ C |→ D |→ A |→ Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường parabol B Đường hypebol C Đường elip D Đường tròn x Câu Giá trị nhỏ hàm số y = tập xác định x +1 1 A y = B y = C y = − D y = −1 R R R R 2 Câu Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = [ 0; +∞) B S = (−∞; ln3) C S = [ -ln3; +∞) D S = (−∞; 2) Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; 2) B (2; −1; −2) C (−2; −1; 2) D (−2; 1; 2) Câu Cho a > 1; < x < y Bất đẳng thức sau đúng? B loga x > loga y C ln x > ln y A log x > log y D log x > log y a a Câu 10 Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = −1+ B y = +1− ln ln 5 ln ln x x C y = − D y = + ln ln 5 ln Câu 11 Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 300 B 360 C 450 D 600 ax + b Câu 12 Cho hàm số y = có đồ thị hình vẽ bên Kết luận sau sai? cx + d A ac < B ad > C bc > D ab < Câu 13 Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = (−∞; 2) B S = [ 0; +∞) C S = [ -ln3; +∞) D S = (−∞; ln3) Trang 1/5 Mã đề 001 Câu 14 Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A m ≥ B m ∈ (−1; 2) C −1 < m < D m ∈ (0; 2) Câu 15 Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số đồng biến (−∞; 0) ∪ (0; +∞) B Hàm số đồng biến R C Hàm số nghịch biến (0; +∞) D Hàm số nghịch biến R Câu 16 Cho hình chóp S ABCcó cạnh đáy a cạnh bên b Thể tích khối chóp là: q √ √ 2 a b2 − 3a2 3a b B VS ABC = A VS ABC = √ 12 √12 3ab a2 3b2 − a2 C VS ABC = D VS ABC = 12 12 Câu 17 Một hộp chứa sáu cầu trắng bốn cầu đen Lấy ngẫu nhiên đồng thời bốn Tính xác suất cho có màu trắng 209 A B C D 210 105 21 210 Câu 18 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (2; −3; 4) −n = (−2; 3; 1) −n = (−2; 3; 4) −n = (2; 3; −4) A → B → C → D → Câu 19 Cho hàm số y = f (x) có đạo hàm f ′ (x) = x2 − 2x, ∀x ∈ R Hàm số y = −2 f (x) đồng biến khoảng A (2; +∞) B (−∞; −2) C (−2; 0) D (0; 2) Câu 20 Cho hình phẳng D giới hạn đường y = (x − 2)2 , y = 0, x = 0, x = Khối tròn xoay tạo thành quay D quạnh trục hồnh tích V bao nhiêu? 32π 32 32 B V = C V = D V = 32π A V = 5 5π Câu 21 Cho hình chóp S ABCD có đáy hình vng ABCD cạnh a, cạnh bên S A vng góc với mặt phẳng đáy Biết S A = 3a, tính thể tích V khối chóp S ABCD a3 A V = 2a3 B V = 3a3 C V = a3 D V = Câu 22 Thể tích khối lập phương có cạnh 3a là: A 27a3 B 2a3 C 8a3 D 3a3 Câu 23 Cho hàm số y = f (x) có bảng biến thiên sau : Hàm số cho đồng biến khoảng đây? A (1; +∞) B (−∞; 1) C (0; 1) Câu 24 Số phức z = − 3i có phần ảo A −3 B 3i D (−1; 0) C D Câu 25 Xác định tập tất giá trị tham số m để phương trình 2x3 + x2 − 3x − có nghiệm phân biệt 19 A S = (−3; −1) ∪ (1; 2) B S = (−5; − ) ∪ ( ; 6) 4 19 19 C S = (−2; − ) ∪ ( ; 6) D S = (−2; − ) ∪ ( ; 7) 4 4 m = − 2 Câu 26 Cho hình chóp S ABCD có cạnh đáy a Gọi M, N trung điểm SA BC o Biết góc √ (ABCD) 60 Tính √ MN mặt phẳng √ sin góc MN mặt phẳng (S BD) 10 A B C D 5 Trang 2/5 Mã đề 001 Câu 27 Cường độ trận động đất M (richter) cho công thức M = log A − log A0 , với A biên độ rung chấn tối đa A0 biên độ chuẩn (hằng số) Đầu kỷ 20, trận động đất San Francisco có cường độ 8,3 độ Richter Trong năm đó, trận động đất khác Nam Mỹ có biên độ mạnh gấp lần Cường độ trận động đất Nam Mỹ có kết gần bằng: A 2,075 B 11 C 8,9 D 33,2 Câu 28 Lăng trụ ABC.A′ B′C ′ có đáy tam giác cạnh a Hình chiếu vng góc A′ lên (ABC) trung điểm BC Góc cạnh bên mặt phẳng đáy 600 Khoảng cách từ C ′ đến mp (ABB′ A′ ) √ √ √ √ a 3a 10 3a 13 3a 13 B C D A 26 20 13 Câu 29 Họ nguyên hàm hàm số y = (x − 1)e x là: A (x − 2)e x + C B xe x + C C xe x−1 + C D (x − 1)e x + C Câu 30 Nguyên hàm F(x) hàm số f (x) = 2x2 + x3 − thỏa mãn điều kiện F(0) = x4 x4 − 4x C x3 − x4 + 2x D x3 + − 4x + A 2x3 − 4x4 B x3 + 4 2x − Câu 31 Với giá trị tham số m hàm số y = đạt giá trị lớn đoạn [1; 3] x + m2 : √ A m = ±2 B m = ± C m = ±3 D m = ±1 Câu 32 Trong không gian với hệ tọa độ Oxyz, cho A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0) Bán kính đường√trịn nội tiếp tam giác ABC √ √ √ B C D A Câu 33 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080253 đồng B 36080254 đồng C 36080255 đồng D 36080251 đồng Câu 34 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 32π 31π 33π B C 6π D A 5 Câu 35 Hàm số hàm số sau đồng biến R A y = −x3 − x2 − 5x B y = x3 + 3x2 + 6x − 4x + C y = D y = x4 + 3x2 x+2 Câu 36 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng ′ ′ ′ (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính √ thể tích khối lăng trụ √ABC.A B C √ 3 B 9a C 4a D 6a3 A 3a cos x π Câu 37 Biết hàm F(x) nguyên hàm hàm f (x) = F(− ) = π Khi giá trị sin x + cos x F(0) bằng: 6π 3π 6π 6π A ln + B ln + C ln + D 5 5 Câu 38 Cho tứ diện DABC, tam giác ABC vuông B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, hình chóp DABC có bán √ kính √ BC = 4a, DA = 5a Bán√kính mặt cầu ngoại tiếp √ 5a 5a 5a 5a A B C D 2 3 x2 + mx + Câu 39 Tìm tất giá trị tham số m để hàm số y = đạt cực tiểu điểm x = x+1 A m = −1 B m = C m = D Khơng có m Trang 3/5 Mã đề 001 √ 2x − x2 + Câu 40 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Câu 41 Tính đạo hàm hàm số y = x+cos3x A y′ = x+cos3x ln B y′ = (1 − sin 3x)5 x+cos3x ln C y′ = (1 + sin 3x)5 x+cos3x ln D y′ = (1 − sin 3x)5 x+cos3x ln Câu 42 Có cặp số nguyên (x; y) thỏa mãn log4 (9x2 + 16y2 + 112y) + log3 (9x2 + 16y2 ) < log4 y + log3 (684x2 + 1216y2 + 720y)? A 64 B 56 C 76 D 48 Câu 43 Cho đa giac đêu 12 đinh Chon ngâu nhiên đinh 12 đinh cua đa giac Xac suât đê 3đinh đươc chon tao tam giac đêu la 1 1 B P = C P = D P = A P = 55 220 14 Câu 44 Cân phân công ban tư môt tô 10 ban đê lam trưc nhât Hoi co cach phân công khac A 310 B A310 C C10 D 103 Câu 45 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y + 3z − = Một véc tơ pháp tuyến (P) −n = (1; 3; −2) −n = (1; −2; 3) −n = (1; −2; −1) −n = (1; 2; 3) A → B → C → D → Câu 46 Cho hai số phức u, v thỏa mãn u = v = 10 3u − 4v = 50 Tìm giá trị lớn biểu thức 4u + 3v − + 6i A 50 B 30 C 60 D 40 Câu 47 Tập nghiệm bất phương trình 52x+3 > −1 A (−3; +∞) B R C (−∞; −3) D ∅ Câu 48 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 27 B 21 C 12 D 18 Câu 49 Cho khối lăng trụ đứng ABC.A′ B′C ′ √ có đáy ABC tam giác vuông cân A,AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ a3 a3 a3 a3 A B C D 2 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001