Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hai số thực x, y thỏa mãn hệ điều kiện x[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < y < −3 B Nếux > thìy < −15 C Nếux = y = −3 D Nếu < x < π y > − 4π2 Câu Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; −2; 0) B (0; 2; 0) C (−2; 0; 0) D (0; 6; 0) Câu Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (2; −3; −1) B M ′ (−2; −3; −1) C M ′ (−2; 3; 1) D M ′ (2; 3; 1) Câu Bất đẳng thức sau đúng? π A 3√ < 2π √ π e C ( + 1) > ( + 1) −e B 3√ > 2−e √ e π D ( − 1) < ( − 1) √ ′ Câu Cho lăng trụ ABC.A√′ B′C ′ có đáy a, AA = 3a Thể tích khối lăng trụ cho là: √ A 3a3 B 3a3 C 3a3 D a3 Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) √ bao nhiêu? √ B R = C R = 29 D R = A R = 21 Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 B S = C S = D S = A S = 6 −u (2; −2; 1), kết luận sau đúng? Câu Trong không gian với hệ tọa√độ Oxyz cho → → − → − −u | = −u | = A | u | = B | u | = C |→ D |→ Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R? A m > e2 B m > C m ≥ e−2 D m > 2e Câu 10 Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số nghịch biến R B Hàm số nghịch biến (0; +∞) C Hàm số đồng biến (−∞; 0) ∪ (0; +∞) D Hàm số đồng biến R Câu 11 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính qng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động A S = 12 (m) B S = 20 (m) C S = 24 (m) D S = 28 (m) Câu 12 Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 Câu 13 Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + A y = x3 − 2x2 + 3x + B y = x−1 C y = sin x D y = tan x Trang 1/5 Mã đề 001 Câu 14 Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ C m ∈ (0; 2) D m ∈ (−1; 2) A m ≥ B −1 < m < Câu 15 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 B C(6; 21; 21) C C(6; −17; 21) D C(20; 15; 7) A C(8; ; 19) Câu 16 Cho < a , 1; < x , Đẳng thức sau sai? A loga x2 = 2loga x B aloga x = x C loga (x − 2)2 = 2loga (x − 2) D loga2 x = loga x Câu 17 Tìm nguyên hàm hàm số f (x) = cos 3x R R sin 3x A cos 3xdx = sin 3x + C B cos 3xdx = + C R R sin 3x C cos 3xdx = sin 3x + C D cos 3xdx = − + C √ Câu 18 Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức z thoả mãn z + − 8i = đường trịn có phương trình: √ A (x − 4)2 + (y + 8)2 = C (x − 4)2 + (y + 8)2 = 20 √ B (x + 4)2 + (y − 8)2 = D (x + 4)2 + (y − 8)2 = 20 Câu 19 Tập nghiệm bất phương trình log3 (36 − x2 ) ≥ A (−∞; 3] B [−3; 3] C (0; 3] D (−∞; −3] ∪ [3; +∞) Câu 20 Tính đạo hàm hàm số y = 2023 x A y′ = 2023 x ln x B y′ = 2023 x C y′ = x.2023 x−1 D y′ = 2023 x ln 2023 R3 R3 R3 Câu 21 Biết f (x)dx = g(x)dx = Khi [ f (x) + g(x)]dx A −2 B C D Câu 22 Cho hàm số y = f (x) có đạo hàm f ′ (x) = x2 − 2x, ∀x ∈ R Hàm số y = −2 f (x) đồng biến khoảng A (−∞; −2) B (0; 2) C (2; +∞) D (−2; 0) Câu 23 Cho hàm số y = f (x) xác định liên tục đoạn có [−2; 2] có đồ thị đường cong hình vẽ bên Điểm cực tiểu đồ thị hàm số y = f (x) A x = −2 B M(−2; −4) C x = D M(1; −2) Câu 24 Tìm tất giá trị thực tham số mđể hàm số y = (m + 1)x4 − mx2 + có cực tiểu mà khơng có cực đại A m < −1 B m > C −1 ≤ m < D −1 ≤ m ≤ √ x− x+2 Câu 25 Đồ thị hàm số y = có tất tiệm cận? x2 − A B C D Câu 26 Một vật chuyển động với gia tốc a(t) = −20(1 + 2t)−2 Khi t = vận tốc vật 30 (m/s) Quãng đường vật sau giây gần với giá trị sau đây? A 49m B 47m C 50m D 48m x − Câu 27 Tập nghiệm bất phương trình log4 (3 x − 1).log ≤ là: 16 4 A S = (−∞; 1] ∪ [2; +∞) B S = (1; 2) C S = [1; 2] D S = (0; 1] ∪ [2; +∞) Trang 2/5 Mã đề 001 Câu 28 Trong hệ tọa độ Oxyz, cho A(1; kính AB có phương trình √ 2; 3), B(−3; 0; 1) Mặt2 cầu đường 2 2 A (x + 1) + (y − 1) + (z − 2) = B (x + 1) + (y − 1) + (z − 2)2 = 2 C (x − 1) + (y + 1) + (z + 2) = D (x + 1)2 + (y − 1)2 + (z − 2)2 = 24 Câu 29 Cho R4 f (x)dx = 10 −1 A −2 R4 B f (x)dx = Tính R1 f (x)dx −1 C 18 D Câu 30 Nguyên hàm F(x) hàm số f (x) = 2x2 + x3 − thỏa mãn điều kiện F(0) = x4 x4 A x3 − x4 + 2x B x3 + − 4x C 2x3 − 4x4 D x3 + − 4x + 4 Câu 31 Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0), D(1; Độ dài đường cao AH tứ diện ABCD là: A B C D Câu 32 Cho hình chóp S.ABC có đáy ABC tam giác vuông cân với BA = BC = a, S A = a vng góc với √ (SAC) (SBC) bằng? √ √ mặt phẳng đáy Tính cơsin góc hai mặt phẳng 2 B C D A 2 Câu 33 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) Giả sử phương trình mặt phẳng (P) có dạng khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) ax + by + cz + = Tính giá trị abc A B C −2 D −4 Câu 34 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080251 đồng B 36080253 đồng C 36080254 đồng D 36080255 đồng Câu 35 Hàm số hàm số sau đồng biến R A y = x3 + 3x2 + 6x − B y = x4 + 3x2 4x + C y = −x3 − x2 − 5x D y = x+2 √ Câu 36 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình vơ nghiệm B Bất phương trình với x ∈ [ 1; 3] C Bất phương trình với x ∈ (4; +∞) D Bất phương trình có nghiệm thuộc khoảng (−∞; 1) r 3x + Câu 37 Tìm tập xác định D hàm số y = log2 x−1 A D = (1; +∞) B D = (−∞; −1] ∪ (1; +∞) C D = (−∞; 0) D D = (−1; 4) ———————————————– Câu 38 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 23 25 27 29 A B C D 4 4 Câu 39 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), √ S A = 2a Gọi α số đo √ góc đường thẳng S B mp(S AC) Tính giá√trị sin α 15 15 A B C D 10 Trang 3/5 Mã đề 001 Câu 40 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 32π 31π 33π B C D 6π A 5 Câu 41 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ √ √ A 3a3 B 4a3 C 9a3 D 6a3 Câu 42 Có số nguyên ysao cho ứng với số nguyên ycó tối đa 100 số nguyên xthỏa mãn 3y−2x ≥ log5 (x + y2 )? A 20 B 17 C 18 1 Câu 43 Cho hàm số f (x) = − x3 + (2m + 3)x2 − (m2 + 3m)x + tham số m thuộc [−9; 9] để hàm số nghịch biến khoảng (1; 2)? A B D 13 Có giá trị nguyên C 16 D Câu 44 Cho hàm số y = f (x) hàm số bậc có đồ thị hình vẽ Giá trị cực tiểu hàm số cho A B C −2 D −1 Câu 45 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) mặt phẳng (P) : 2x+2y−z+9 = Đường thẳng d qua A có vectơ phương ⃗u = (3; 4; −4) cắt (P) B Điểm M thay đổi (P) cho M ln nhìn đoạn AB góc 90o Khi độ dài MB lớn nhất, đường thẳng MB qua điểm điểm sau? A K(3; 0; 15) B H(−2; −1; 3) C I(−1; −2; 3) D J(−3; 2; 7) Câu 46 Tập nghiệm bất phương trình 52x+3 > −1 A R B ∅ C (−3; +∞) D (−∞; −3) Câu 47 Họ tất nguyên hàm hàm số f (x) = 5x4 + cos x A x5 + sin x + C B 5x5 + sin x + C C x5 − sin x + C D 5x5 − sin x + C Câu 48 Choa,b số dương, a , 1sao cho loga b = 2, giá trị loga (a3 b) A B C D 3a Câu 49 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 18 B 12 C 21 D 27 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001