Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình trụ có hai đáy là hai đường tròn (O; r) và (O′; r) Một hình nón[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho hình trụ có hai đáy hai đường trịn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 √ Câu Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 B (0; 1) C ( ; +∞) D (1; +∞) A (0; ) 4 √ sin 2x Câu Giá trị lớn hàm số y = ( π) R bằng? √ A B C π D π Câu Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; 1; 2) B I(0; −1; 2) C I(0; 1; −2) D I(1; 1; 2) Câu Cho x, y, z ba số thực khác thỏa mãn x = 5y = 10−z Giá trị biểu thức A = xy + yz + zxbằng? A B C D Câu Tập nghiệm bất phương trình log (x − 1) ≥ là: A (1; 2] B (−∞; 2] C [2; +∞) Câu Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = B yCD = −2 C yCD = 36 D (1; 2) D yCD = 52 Câu Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 A ( ; +∞) B ( ; 2] [22; +∞) C [22; +∞) D [ ; 2] [22; +∞) 4 R Câu Cho dx = F(x) + C Khẳng định đúng? x 1 A F ′ (x) = − B F ′ (x) = lnx C F ′ (x) = D F ′ (x) = x x x Câu 10 Có cặp số nguyên (x; y) thỏa mãnlog3 (x2 + y2 + x) + log2 (x2 + y2 ) ≤ log3 x + log2 (x2 + y2 + 24x)? A 89 B 90 C 49 D 48 R4 R4 R4 Câu 11 Nếu −1 f (x) = −1 g(x) = −1 [ f (x) + g(x)] A B C D −1 Câu 12 Một hộp chứa 15 cầu gồm màu đỏ đánh số từ đến màu xanh đánh số từ đến Lấy ngẫu nhiên hai từ hộp đó, xác suất để lấy hai khác màu đồng thời tổng hai số ghi chúng số chẵn 18 A B C D 35 35 35 Trang 1/5 Mã đề 001 Câu 13 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (0; 2) B (1; 3) C (−∞; 1) D (3; +∞) Câu 14 Cho số phức z = + 9i, phần thực số phức z2 A 85 B C −77 D 36 Câu 15 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (1; 2; 3) B (−2; −4; −6) C (2; 4; 6) D (−1; −2; −3) Câu 16 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: ln3 B y′ = − C y′ = A y′ = x xln3 x Câu 17 Tính z thỏa mãn z(2 − i) + 13i = √ mô-đun số phức √ √ 34 34 A |z| = B |z| = C |z| = 34 3 Câu 18 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 − 2i B −3 − 10i C −3 + 2i D y′ = xln3 D |z| = 34 D 11 + 2i Câu 19 Cho số phức z thỏa mãn z(1 + 3i) = 17 + i Khi√đó mơ-đun số phức√w = 6z − 25i D 29 A 13 B C Câu 20 Với số phức z, ta có |z + 1|2 A z + z + B |z|2 + 2|z| + C z2 + 2z + D z · z + z + z + Câu 21 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A −21008 + B 21008 C −21008 D −22016 Câu 22 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A |z2 | = |z|2 B z − z = 2a C z · z = a2 − b2 D z + z = 2bi Câu 23 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = 2ki B A = C A = 2k D A = 25 1 Câu 24 Cho số phức z thỏa = + Khi phần ảo z bao nhiêu? z + i (2 − i)2 A 31 B −31 C −17 D 17 Câu 25 Cho hai √ số phức z1 = + i z2 = − 3i Tính mơ-đun √ số phức z1 + z2 A |z1 + z2 | = B |z1 + z2 | = C |z1 + z2 | = 13 D |z1 + z2 | = Câu 26 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương trình A x − 2y + 2z + 15 = B x − 2y + 2z − 15 = C x + 2y + 2z − 15 = D x + 2y + 2z + 15 = Câu 27 Tìm nguyên hàm F(x) hàm số f (x) = e x+1 , biết F(0) = e A F(x) = e x B F(x) = e x + C F(x) = e2x D F(x) = e x+1 Câu 28 Tìm nguyên hàm hàm số f (x) = √ 2x + R R √ √ B f (x)dx = 2x + + C A f (x) = 2x + + C R R 1√ C f (x)dx = 2x + + C D f (x)dx = √ + C 2x + R3 Câu 29 Cho a x−2 dx = Giá trị tham số a thuộc khoảng sau đây? 1 A (−1; 0) B (1; 2) C (0; ) D ( ; 1) 2 Trang 2/5 Mã đề 001 Câu 30 Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (α) : 2x − 3y − z − = Điểm không thuộc mặt phẳng (α) A M(−2; 1; −8) B N(4; 2; 1) C Q(1; 2; −5) D P(3; 1; 3) Câu 31 Cho hàm sốRy = f (x) có đạo hàm, liên tục R f (x) > x ∈ [0; 5] Biết f (x)· f (5− x) = 1, tính tích phân I = + f (x) 5 A I = B I = C I = 10 D I = −−→ Câu 32 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) B(2; 2; 1) Vectơ AB có tọa độ A (1; 1; 3) B (−1; −1; −3) C (3; 3; −1) D (3; 1; 1) Câu 33 Trong không gian Oxyz, cho ba điểm A(0; 1; 2), B(2; −2; 1), C(−2; 1; 0) Khi mặt phẳng (ABC) có phương trình A x + y − z + = B x − y + z + = C x + y − z − = D 6x + y − z − = Câu 34 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | Câu 35 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = (|z| − 4)2 B P = (|z| − 2)2 C P = |z|2 − D P = |z|2 − 2z − i Mệnh đề sau đúng? + iz A |A| > B |A| < C |A| ≥ D |A| ≤ √ Câu 37 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Câu 36 Cho số phức z thỏa mãn |z| ≤ ĐặtA = Biết điểm biểu diễn số phức ω = số phức ω A điểm M B điểm N bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm P D điểm Q Câu 38 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = B A = −1 C A = + i D A = Câu 39 Cho số√phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| B P = 2016 C P = −2016 D P = A max T = √ Câu 40 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 A < |z| < B |z| < C ≤ |z| ≤ D |z| > 2 2 √ Câu 41 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a + b + c B a2 + b2 + c2 − ab − bc − ca C D a2 + b2 + c2 + ab + bc + ca z Câu 42 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức M = |z + − i| √ √ A B C D 2 π R2 Câu 43 Biết sin 2xdx = ea Khi giá trị a là: A − ln B C ln D Trang 3/5 Mã đề 001 Câu 44 Chọn mệnh đề mệnh đề sau: e2x +C A R e2x dx = C R (2x + 1)2 dx = (2x + 1)3 + C B R x dx =5 x + C D R sin xdx = cos x + C Câu 45 Chọn mệnh đề mệnh đề sau: A R3 |x2 − 2x|dx = − R2 B R3 C R3 (x2 − 2x)dx R2 |x − 2x|dx = (x − 2x)dx + D R3 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx R3 (x2 − 2x)dx + R3 (x2 − 2x)dx R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx 1 Câu 46 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080255 đồng C 36080253 đồng B 36080251 đồng D 36080254 đồng Câu 47 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox A 31π B 33π C 6π D 32π √ 2x − x2 + Câu 48 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Câu 49 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRl + 2πR2 B S = πRh + πR2 C S = 2πRl + 2πR2 D S = πRl + πR2 Câu 50 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (1; 5) B (−1; 1) C (3; 5) D (−3; 0) Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001