Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001001 Câu 1 Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞;−2][.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001001 Câu Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 C ( ; +∞) D [ ; 2] [22; +∞) A ( ; 2] [22; +∞) B [22; +∞) 4 √ d = 1200 Gọi K, Câu Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC I √ trung điểm cạnh√CC1 , BB1 Tính khoảng√cách từ điểm I đến mặt phẳng (A1 BK) √ a 15 a a A B C D a 15 3 Câu Cho a, b hai số thực dương Mệnh đề đúng? a ln a A ln(ab) = ln a ln b B ln( ) = b ln b 2 C ln(ab ) = ln a + ln b D ln(ab ) = ln a + (ln b)2 Câu Đường cong hình bên đồ thị hàm số nào? A y = −x4 + 2x2 + B y = −x4 + C y = x4 + D y = x4 + 2x2 + √ Câu Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường √ thẳng BB′ AC ′ √ √ √ a a a A B C D a 2 Câu Tập nghiệm bất phương trình log (x − 1) ≥ là: A (−∞; 2] B [2; +∞) C (1; 2] Câu Tìm giá trị cực đại yCD hàm số y = x − 12x + 20 A yCD = B yCD = 52 C yCD = 36 D (1; 2) D yCD = −2 Câu Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = −7 B m = C m = D m = Câu Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) √ √ √ √ 3 B a C a D a A 2a 3 Câu 10 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (0; 1) B (1; 2) C (−1; 2) D (1; 0) Câu 11 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 A B C D Câu 12 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A B −1 C D Trang 1/5 Mã đề 001001 Câu 13 Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho A πrl2 B 2πrl C πrl D πr2 l 3 Câu 14 Với a số thực dương tùy ý, ln(3a) − ln(2a) A ln B ln(6a2 ) C lna 3 D ln Câu 15 Phần ảo số phức z = − 3i A B −2 D C −3 Câu 16 Cho cấp số nhân (un ) với u1 = công bội q = Giá trị u3 1 B C D A 2 Câu 17 Tính mơ-đun số phức z thỏa mãn z(2 − i) + 13i√= √ 34 A |z| = 34 B |z| = 34 C |z| = √ 34 D |z| = 4(−3 + i) (3 − i)2 Câu 18 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ √ √ − 2i √ B |w| = 48 C |w| = D |w| = 85 A |w| = Câu 19 Những số sau vừa số thực vừa số ảo? A B C.Truehỉ có số C Khơng có số D Chỉ có số Câu 20 Cho hai số phức z1 = + i z2√= − 3i Tính mơ-đun số phức z1 + z2 √ A |z1 + z2 | = B |z1 + z2 | = C |z1 + z2 | = D |z1 + z2 | = 13 Câu 21 Đẳng thức đẳng thức sau? A (1 + i)2018 = −21009 B (1 + i)2018 = 21009 i C (1 + i)2018 = 21009 Câu 22 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 − 2i B 11 + 2i C −3 + 2i !2016 !2018 1+i 1−i Câu 23 Số phức z = + 1−i 1+i A −2 B + i C D (1 + i)2018 = −21009 i D −3 − 10i D z2 Câu 24 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ A 11 B C D 13 Câu 25 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A −21008 B −22016 C −21008 + D 21008 Câu 26 Hàm số f (x) thoả mãn f ′ (x) = x x là: A (x + 1) x + C Câu 27 Giá trị A −e B x2 x + C R0 −1 e x+1 dx B e x+1 C (x − 1) x + C D x2 + C − e D e − x+1 + C Câu 28 Hàm số y = F(x) nguyên hàm hàm số y = f (x) Hãy chọn khẳng định A F(x) = f ′ (x) B F ′ (x) = f (x) C F(x) = f ′ (x) + C D F ′ (x) + C = f (x) R1 Câu 29 Tích phân e−x dx 1 e−1 A B e − C − D e e e Trang 2/5 Mã đề 001001 Câu 30 Cho f (x) hàm số liên tục [a; b] (với a < b ) F(x) nguyên hàm f (x) [a; b] Mệnh đề đúng? A Diện tích S hình phẳng giới hạn hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) trục hồnh tính theo cơng thức S = F(b) − F(a) Rb B a k · f (x) = k[F(b) − F(a)] Ra C b f (x) = F(b) − F(a) b Rb D a f (2x + 3) = F(2x + 3) a Câu 31 Phương trình mặt phẳng qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n = (−2; 1; −1) A 2x + y − z − = B −2x + y − z + = C −2x + y − z + = D −2x + y − z − = Câu 32 Cho hàm số f (x) có đạo hàm với x ∈ R f ′ (x) = 2x + Giá trị f (2) − f (1) A B C D −2 Câu 33 Trong hệ tọa độ Oxyz, cho bốn điểm A(0; 1; 1), B(1; 0; 1), C(0; 0; 1), I(1; 1; 1) Mặt phẳng qua I, song song với mặt phẳng (ABC) có phương trình là: A z − = B y − = C x + y + z − = D x − = Câu 34 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = −1 B A = C A = D A = + i √ 2 Mệnh đề Câu 35 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = đúng? √ 2 2 2 2 A |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = B |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = √ C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = Câu 36 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D 2 Câu 37 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A B 13 C D Câu 38 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z2 | √ √ √ B P = + C P = 34 + D P = 26 A P = + z + z2 Câu 39 Cho số phức z (không phải số thực, số ảo) thỏa mãn số thực − z + z2 Khi mệnh đề sau đúng? 5 A < |z| < B < |z| < C < |z| < D < |z| < 2 2 2 Câu 40 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ A B 10 C 15 D Câu 41 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu !diễn số phức thuộc tập hợp sau đây? ! ! ! 1 9 A ; B 0; C ; D ; +∞ 4 4 Câu 42 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = 2016 B P = C P = −2016 D P = Trang 3/5 Mã đề 001001 √ Câu 43 Tính đạo hàm hàm số y = log4 x2 − A y′ = (x2 x − 1)log4 e B y′ = √ x2 − ln C y′ = 2(x2 x − 1) ln D y′ = (x2 x − 1) ln √ 2x − x2 + có số đường tiệm cận đứng là: Câu 44 Đồ thị hàm số y = x2 − A B C D Câu 45 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = A 23 B 27 C 29 D 25 Câu 46 Cho tứ diện DABC, tam giácABC vuông B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính √ √ √ √ 5a 5a 5a 5a B C D A 3 2 Câu 47 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = 2πRl + 2πR2 B S = πRl + πR2 √ Câu 48 Cho bất phương trình 2(x−1)+1 C S = πRl + 2πR2 D S = πRh + πR2 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình có nghiệm thuộc khoảng (−∞; 1) B Bất phương trình với x ∈ [ 1; 3] C Bất phương trình với x ∈ (4; +∞) D Bất phương trình vơ nghiệm Câu 49 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox A 6π B 33π C 31π D 32π Câu 50 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C −3 D Trang 4/5 Mã đề 001001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001001