Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hàm số f (x) thỏa mãn f ′′(x) = 12x2 + 6x − 4 và f (0) = 1, f (1) =[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = −5 B f (−1) = C f (−1) = −3 D f (−1) = −1 Câu Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 C [ ; 2] [22; +∞) D ( ; 2] [22; +∞) A [22; +∞) B ( ; +∞) 4 Câu Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tam giác BCD và√có chiều cao chiều cao tứ diện √ tiếp √ √ 2π 2.a π 3.a2 π 2.a2 A B C π 3.a D 3 Câu Cho a, b hai số thực dương Mệnh đề đúng? a ln a A ln(ab2 ) = ln a + (ln b)2 B ln( ) = b ln b C ln(ab2 ) = ln a + ln b D ln(ab) = ln a ln b Câu Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x B − C D A 6 Câu Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) B (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = A (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 2 C (S ) : (x + 2) + (y + 1) + (z − 1) = D (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 3 Câu Cho a > a , Giá trị alog A B √ a bằng? C D √ Câu Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối trịn xoay tạo thành quay (H) quanh trục Ox 32 32π 8π A V = B V = C V = D V = 5 3 Câu Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox 16π 16 16 16π B C D A 15 15 Câu 10 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) A B C D 2 Câu 11 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 A B C D Trang 1/5 Mã đề 001 Câu 12 Đồ thị hàm số có dạng đường cong hình bên? x−3 A y = x4 − 3x2 + B y = C y = x3 − 3x − D y = x2 − 4x + x−1 Câu 13 Tích tất nghiệm phương trình ln2 x + 2lnx − = 1 A B −2 C D −3 x−1 y−2 z+3 = = Điểm thuộc Câu 14 Trong không gian Oxyz, cho đường thẳng d : −1 −2 d? A P(1; 2; 3) B M(2; −1; −2) C N(2; 1; 2) D Q(1; 2; −3) Câu 15 Cho cấp số nhân (un ) với u1 = công bội q = Giá trị u3 A B C D 2 Câu 16 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (0; 1) B (−1; 2) C (1; 2) D (1; 0) Câu 17 Những số sau vừa số thực vừa số ảo? A Chỉ có số B C.Truehỉ có số C Khơng có số D Câu 18 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A B C −7 D −3 2(1 + 2i) Câu 19 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A B 13 C D Câu 20 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A z + z = 2bi B z − z = 2a C z · z = a2 − b2 D |z2 | = |z|2 Câu 21 Cho số phức z thỏa mãn √ z(1 + 3i) = 17 + i Khi√đó mơ-đun số phức w = 6z − 25i C D A 13 B 29 Câu 22 Cho hai số phức z1 = + i z2 = − 3i Tính mơ-đun √ √ số phức z1 + z2 A |z1 + z2 | = B |z1 + z2 | = C |z1 + z2 | = 13 D |z1 + z2 | = Câu 23 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A −21008 B 21008 C −21008 + D −22016 4(−3 + i) (3 − i)2 Câu 24 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ √ √ − 2i √ A |w| = 85 B |w| = 48 C |w| = D |w| = Câu 25 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D Câu 26 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương trình A x + 2y + 2z − 15 = B x − 2y + 2z + 15 = C x − 2y + 2z − 15 = D x + 2y + 2z + 15 = R2 Câu 27 Tích phân I = (2x − 1) có giá trị bằng: A B C D Trang 2/5 Mã đề 001 Câu 28 Tìm nguyên hàm hàm số f (x) = √ 2x + R R √ 1√ A f (x) = 2x + + C B f (x)dx = 2x + + C R R √ C f (x)dx = 2x + + C D f (x)dx = √ + C 2x + −−→ Câu 29 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) B(2; 2; 1) Vectơ AB có tọa độ A (3; 1; 1) B (−1; −1; −3) C (3; 3; −1) D (1; 1; 3) R0 Câu 30 Giá trị −1 e x+1 dx A − e B e C e − D −e R1 3x − a a dx = 3ln − , a, b nguyên dương phân số tối giản Hãy Câu 31 Biết b b x + 6x + tính ab A ab = B ab = C ab = 12 D ab = −5 Câu 32 F(x) nguyên hàm hàm số y = xe x Hàm số sau F(x)? 2 2 A F(x) = (e x + 5) B F(x) = − e x + C C F(x) = e x + D F(x) = − (2 − e x ) 2 2 R Câu 33 Tìm nguyên hàm I = xcosxdx x A I = xsinx − cosx + C B I = x2 sin + C x C I = x cos + C D I = xsinx + cosx + C 2 Câu 34 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ C A B √ D 2 Câu 35 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − hai nghiệm phức phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ √ 85 97 B T = 13 C T = D T = A T = 13 3 Câu 36 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z √2 | √ √ A P = 26 B P = C P = 34 + D P = + √ Câu 37 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A B a + b + c C a2 + b2 + c2 + ab + bc + ca D a2 + b2 + c2 − ab − bc − ca Câu 38 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = −1 B A = C A = D A = + i Câu 39 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ A 10 B 15 C D 2z − i Câu 40 Cho số phức z thỏa mãn |z| ≤ ĐặtA = Mệnh đề sau đúng? + iz A |A| ≥ B |A| ≤ C |A| > D |A| < Câu 41 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ của√biểu thức T = |z + 1| + 2|z − 1| A P = 2016 B P = C max T = D P = −2016 Trang 3/5 Mã đề 001 √ Câu 42 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 A < |z| < B |z| > C |z| < D ≤ |z| ≤ 2 2 Câu 43 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 32π 31π 33π B 6π C D A 5 Câu 44 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ 3a a 15 3a 3a 30 B C D A 10 2 Câu 45 Biết π R2 sin 2xdx = ea Khi giá trị a là: A − ln B ln C D Câu 46 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y + 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 47 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: 6π A ln + 5 B 6π C π cos x F(− ) = π Khi giá trị sin x + cos x 3π ln + D ln + 6π 3x Câu 48 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = B Không tồn m C m = −2 D m = Câu 49 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc với mặt phẳng (ABC), diện tích tam giác S BC a2 Tính thể tích khối chóp S ABC √ √ √ √ a3 a3 15 a3 15 a3 15 A B C D 16 Câu 50 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể tích khối trụ (T ) lớn √ √ √ √ 250π 400π 500π 125π A B C D 9 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001