Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề thi 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) x +[.]
Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề thi 001 Câu Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) A (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = B (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 1 D (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = C (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 3 √ d = 1200 Gọi K, Câu Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC I trung điểm cạnh√CC1 , BB1 Tính khoảng√cách từ điểm I đến mặt phẳng (A1 BK) √ √ a a 15 a A a 15 B C D 3 a3 Câu Cho hình chóp S ABCD có cạnh đáy a thể tích Tìm góc mặt bên mặt đáy hình chóp cho A 1350 B 600 C 450 D 300 R Câu R4 Biết f (u)du = F(u) + C Mệnh đề R đúng? A f (2x − 1)dx = 2F(x) − + C B f (2x − 1)dx = F(2x − 1) + C R R C f (2x − 1)dx = F(2x − 1) + C D f (2x − 1)dx = 2F(2x − 1) + C Câu Tập nghiệm bất phương trình log (x − 1) ≥ là: A (1; 2] B (1; 2) C [2; +∞) D (−∞; 2] √ Câu Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường √ thẳng BB′ AC ′ √ √ √ a a a A B C a D 2 Câu Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: A y′ = xπ−1 B y′ = π1 xπ−1 C y′ = πxπ−1 D y′ = πxπ Câu Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m tham số thực) Có giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2? A B C D Câu Cho hàm số y = ax+b có đồ thị đường cong hình bên Tọa độ giao điểm đồ thị hàm cx+d số cho trục hoành A (2; 0) B (−2; 0) C (0; 2) D (0; −2) Câu 10 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d < R B d > R C d = R D d = Câu 11 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A B −1 C D Câu 12 Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cự trị? A B C 15 D 17 Trang 1/5 Mã đề 001 Câu 13 Đạo hàm hàm số y = (2x + 1) tập xác định 1 − − A (2x + 1) ln(2x + 1) B 2(2x + 1) ln(2x + 1) 4 − − D − (2x + 1) C − (2x + 1) 3 − Câu 14 Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) N( 3; 2; −1) Đường thẳng MN có phương trình tham số A x = + ty = tz = − t B x = + ty = tz = + t C x = − ty = tz = + t D x = + 2ty = 2tz = + t Câu 15 Trên tập số phức, cho phương trình z2 + 2(m − 1)z + m + 2m = Có tham số m để phương trình cho có hai nghiệm phân biệt z1 ; z2 thõa mãn z1 + z2 = A B C D x−2 y−6 z+2 Câu 16 Trong không gian Oxyz, cho hai đường thẳng chéo d1 : = = −2 x−4 y+1 z+2 d2 : = = Gọi mặt phẳng (P) chứa d1 (P)song song với đường thẳng d2 Khoảng −2 cách từ điểm M(1; 1; 1) đến (P) √ B √ D 10 A √ C √ 10 53 z = Biết tập hợp điểm biểu diễn số phức zlà đường Câu 17 Cho số phức zthỏa mãn i + trịn (C) Tính bán kính rcủa đường √ trịn (C) √ A r = B r = C r = D r = Câu 18 Trên mặt phẳng tọa độ, cho M(2; 3) điểm biểu diễn số phức z Phần thực z A B −2 C D −3 Câu 19 Cho số phức z thoả mãn (1 + z)2 số thực Tập hợp điểm M biểu diễn số phức z A Một đường thẳng B Parabol C Đường trịn D Hai đường thẳng √ Câu 20 (Tốn Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 3 A |z| > B < |z| < C |z| < D ≤ |z| ≤ 2 2 Câu 21 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ D P = A P = B P = C P = 2 Câu 22 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A π B 2π C 4π D 3π Câu 23 Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A B C D 10 √ Câu 24 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = −2 − 3i Câu 25 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện z + = − 2i √ A max |z| = B max |z| = C max |z| = D max |z| = Trang 2/5 Mã đề 001 −2 − 3i Câu 26 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện z + = − 2i √ D max |z| = A max |z| = B max |z| = C max |z| = z+i+1 Câu 27 Tìm tập hợp điểm M biểu diễn số phức z cho w = số ảo? z + z + 2i A Một Parabol B Một đường thẳng C Một đường tròn D Một Elip Câu 28 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A π B 2π C 4π D 3π √ Câu 29 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = Câu 30 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện w = (1 − 2i)z + 3, biết z số phức thỏa mãn |z + 2| = A x = B (x + 1)2 + (y − 2)2 = 125 C (x − 1)2 + (y − 4)2 = 125 D (x − 5)2 + (y − 4)2 = 125 Câu 31 Cho số phức z thỏa mãn |i + 2z| = |z − 3i| Tập hợp điểm biểu diễn số phức w = (1 − i)z + đường thẳng có phương trình A x + y − = B x + y − = C x − y + = D x − y + = Câu 32 Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π A 25π B 5π C D Câu 33 Trong không gian Oxyz, cho điểm M nằm trục Oxsao cho M khơng trùng với gốc tọa độ, tọa độ điểm Mcó dạng A M(0; 0; c), c , B M(a; 0; 0), a , C M(0; b; 0), b , D M(a; 1; 1), a , − −a = (1; 2; 0) → Câu 34 Gọi φ góc hai vectơ → b = (2; 0; −1), cos φ 2 B C D − A √ 5 → − Câu 35 Trong không gian với hệ trục tọa độ Oxyz, cho ⃗a = (1; 2; 0), b = (2; −1; 1),⃗c = (1; −1; 0) Phát biểu sau sai? √ → − → − → − → − → − → − −a = A a ⊥ b B a c = −1 C c ⊥ b D → Câu 36 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 5; 2),B(3; 7; −4) Tọa độ điểm M đối xứng với A qua B A (5; 9; −3) B (7; 9; −10) C (5; 9; −10) D (2; 6; −1) Câu 37 √ Trong không gian cho √ 1; 1), độ dài đoạn ABbằng √ hai điểm A(−1; 2; 3), B(0; √ A 12 B 10 C D − − → − → − → → − → Câu 38 Gọi φ góc hai vectơ a b , với a b khác , cos φ − → −→ − − − → −a → → −a + → −a → a b b −→ b b B C D A − − − − → → → → − → − → − → − → a b a b a b a b Câu 39 Cho hàm số y = x3 − 3x2 − 9x − Trong khẳng định sau, khẳng định sai? A Giá trị cực đại hàm số B Giá trị cực tiểu hàm số C Hàm số có hai điểm cực trị D Hàm số có điểm cực đại điểm cực tiểu Trang 3/5 Mã đề 001 Câu 40 Hàm số hàm số nghịch biến R? A y = −x2 + 3x + Câu 41 Cho hàm số y = B y = x4 − 2x2 + C y = −x3 − 2x + D y = x−3 5−x x+1 có đồ thị (C) đường thẳng d có phương trình y = − x Tìm số giao x−1 điểm (C) d A B C D x+1 Câu 42 Cho hàm số y = Tìm giá trị lớn hàm số đoạn [−1; 2] 3−x A B C D −1 Câu 43 Cho hàm số y = f (x) liên tục R lim y = Trong khẳng định sau, khẳng định x→+∞ đúng? A Đường thẳng x = tiệm cận đứng đồ thị hàm số y = f (x) B Đường thẳng y = tiệm cận đứng đồ thị hàm số y = f (x) C Đường thẳng y = tiệm cận ngang đồ thị hàm số y = f (x) D Đường thẳng x = tiệm cận ngang đồ thị hàm số y = f (x) Câu 44 Bảng biến thiên hình hàm số hàm số sau? x −∞ +∞ + y′ + +∞ y −∞ 2x − 2x + 2x − 2x + B y = C y = D y = x−1 x−1 x+1 x−1 Câu 45 Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m > B m ≤ C m < D m ≥ A y = Câu 46 √ Hình nón có bán kính đáy R, đường sinh l diện √ tích xung quanh 2 A π l − R B πRl C 2π l2 − R2 D 2πRl Câu 47 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) bao nhiêu? √ √ A R = B R = 21 C R = 29 D R = Câu 48 Cho hình chóp S ABCcó cạnh đáy a cạnh bên b Thể tích khối chóp là: q √ √ 2 a b2 − 3a2 3ab A VS ABC = B VS ABC = 12 12 √ √ a2 3b2 − a2 3a2 b C VS ABC = D VS ABC = 12 12 Câu R49 Công thức sai? R A R sin x = − cos x + C B R a x = a x ln a + C C cos x = sin x + C D e x = e x + C Câu 50 Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? C ∀m ∈ R A < m , B m < + 2x x+1 D −4 < m < Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001