1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn tập thpt qg môn toán (638)

5 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 124,67 KB

Nội dung

Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề thi 001 Câu 1 Giá trị nhỏ nhất của hàm số y = 2x + cos xtrên đoạn [0; 1][.]

Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề thi 001 Câu Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A π B C −1 Câu Đạo hàm hàm số y = log √2 3x − là: 6 A y′ = B y′ = C y′ = (3x − 1) ln (3x − 1) ln 3x − ln D D y′ = 3x − ln √ √ Câu Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân B S A = a 6, S B = a Tính góc SC mặt phẳng (ABC) A 600 B 450 C 1200 D 300 Câu Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 B C D − A 6 2 Câu Trong không gian Oxyz, cho mặt cầu (S ) : x + y + z − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = −7 C m = D m = Câu Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x3 + x2 y = x2 +3x+mcắt nhiều điểm A −2 ≤ m ≤ B < m < C −2 < m < D m = R Câu Cho x dx = F(x) + C Khẳng định đúng? A F ′ (x) = − x12 B F ′ (x) = x22 C F ′ (x) = ln x D F ′ (x) = 1x Câu Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A −1 B C D Câu Cho số phức z = + 9i, phần thực số phức z2 A −77 B 36 C D 85 Câu 10 Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (1; +∞) B (1; 2) C (2; +∞) D (−∞; 1) Câu 11 Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC tam giác vuông cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) 36 a, thể tích khối lăng trụ cho √ √ √ √ A 22 a3 B 62 a3 C 42 a3 D 2a3 Câu 12 Phần ảo số phức z = − 3i A B −2 C −3 D Câu 13 Cho số phức z1 = − 4i; z2 = − i, phần ảo số phức z1 z2 A −7 B C D −1 Câu 14 Cho hình chóp S ABCD có cạnh đáy a Tính khoảng cách từ điểm A đến mặt phẳng (S BD) theo a √ √ a a A B C 2a D a 2 Trang 1/5 Mã đề 001 Câu 15 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 18 B 27 C 21 D 12 Câu 16 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y + z + = Khẳng định sau đúng? A (P) tiếp xúc mặt cầu (S ) B (P) qua tâm mặt cầu (S ) C (P) cắt mặt cầu (S ) D (P) không cắt mặt cầu (S ) Câu 17 Tập nghiệm bất phương trình 52x+3 > −1 A (−3; +∞) B R C ∅ D (−∞; −3) Câu 18 Thể tích khối hộp chữ nhật có kích thước a; 2a;3a A 2a3 B 6a3 C a3 D 6a2 Câu 19 Cho số phức z, w khác biểu diễn hai điểm A, B mặt phẳng Oxy Nếu số ảo mệnh đề sau đúng? A Tam giác OAB tam giác vuông C Tam giác OAB tam giác z w B Tam giác OAB tam giác cân D Tam giác OAB tam giác nhọn Câu 20 Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A B C 10 D Câu 21 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ B P = C P = D P = A P = 2 Câu 22 Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 mặt phẳng phức Khi đó√độ dài MN √ A MN = B MN = C MN = D MN = Câu 23 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 A √ B √ C D √ 13 Câu 24 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = Tìm giá trị lớn biểu thức T = |z + 1| √ + 2|z − 1| √ √ √ B max T = C max T = D max T = A max T = 10 √ Câu 25 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 1 A ≤ |z| ≤ B |z| < C |z| > D < |z| < 2 2 Câu 26 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện w = (1 − 2i)z + 3, biết z số phức thỏa mãn |z + 2| = A (x − 1)2 + (y − 4)2 = 125 B (x − 5)2 + (y − 4)2 = 125 C x = D (x + 1)2 + (y − 2)2 = 125 z − z =2? Câu 27 Tìm tập hợp điểm M biểu diễn số phức z cho z − 2i A Một đường tròn B Một đường thẳng C Một Parabol D Một Elip √ Câu 28 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = Trang 2/5 Mã đề 001 Câu 29 Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 mặt phẳng phức Khi đó√ độ dài MN √ A MN = B MN = C MN = D MN = Câu 30 Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π A 5π B 25π C D 1+i Câu 31 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = z mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 25 25 15 15 A S = B S = C S = D S = 4 z+i+1 Câu 32 Tìm tập hợp điểm M biểu diễn số phức z cho w = số ảo? z + z + 2i A Một Parabol B Một đường thẳng C Một đường trịn D Một Elip Câu 33 Trong khơng gian Oxyz, cho điểm M nằm mặt phẳng (Oxy)sao cho M không trùng với gốc tọa độ không nằm hai trục Ox, Oy, tọa độ điểm M (a, b, c , 0) A (0; 0; c) B (a; b; 0) C (0; b; a) D (a; 1; 1) − −a = (−2; 2; 5), → b = (0; 1; 2) không gian Câu 34 Tích vơ hướng hai vectơ → A 14 B 12 C 13 D 10 Câu 35 Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A′ B′C ′ D′ biết A(1; −1; 0), B′ (2; 1; 3), C ′ (−1; 2; 2), a, b → Khi tọa độ điểm Oxy là? y z+2 x−1 = = A (α1 ) : x − 2y + z − = B ∆ : −1 C (α3 ) : 2x + 3y − z + = D (α2 ) : 3x + 5y − z − = → − −a = (1; 3; 4), tìm vectơ b phương với vectơ → −a Câu 36 Cho vectơ → → − → − → − → − A b = (2; −6; −8) B b = (−2; 6; 8) C b = (−2; −6; −8) D b = (−2; −6; 8) Câu 37 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 2; 0),B(3; −2; 2),C(2; 3; 1) Khoảng cách từ trung điểm đoạn AB đến trọng tâm tam giác ABC A B C D → − −−→ → − → − Câu 38 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 0; 1),OB = i − j − k Hãy tìm tọa độ điểm C cho tứ giác ACOB hình bình hành A (−4; 2; 2) B (−2; 2; 4) C (4; −2; −2) D (2; −2; −4) 2x − Câu 39 Cho hàm số y = Trong khẳng định sau, khẳng định đúng? −x + A Hàm số đồng biến khoảng (−2; 2) B Hàm số đồng biến khoảng (−2; +∞) C Hàm số đồng biến khoảng (2; +∞) D Hàm số đồng biến tập xác định Câu 40 Hàm số hàm số nghịch biến R? x−3 A y = −x2 + 3x + B y = x4 − 2x2 + C y = D y = −x3 − 2x + 5−x Câu 41 Cho hàm số y = −x4 − x2 + Trong khẳng định sau, khẳng định sai? A Đồ thị hàm số có điểm cực đại B Điểm cực tiểu hàm số (0; 1) C Đồ thị hàm số cắt trục tung điểm (0; 1) D Đồ thị hàm số khơng có tiệm cận Câu 42 Tìm giá trị nhỏ hàm số f (x) = 2x3 − 3x2 − 12x + 10 đoạn [−3; 3] A B 17 C −35 D −10 Câu 43 Xét hàm số f (x) = −x4 + 2x2 + đoạn [0; 2] Trong khẳng định sau, khẳng định sai? A Giá trị lớn hàm số f (x) đoạn [0; 2] Trang 3/5 Mã đề 001 B Hàm số f (x) đạt giá trị nhỏ đoạn [0; 2] x = C Giá trị nhỏ hàm số f (x) đoạn [0; 2] −5 D Hàm số f (x) đạt giá trị lớn đoạn [0; 2] x = Câu 44 Cho hàm số y = x+1 Tìm giá trị lớn hàm số đoạn [−1; 2] 3−x A B C D −1 p Câu 45 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < π y > − 4π2 B Nếux = y = −3 C Nếux > thìy < −15 D Nếu < x < y < −3 Câu 46 Đồ thị hàm số sau có vơ số đường tiệm cận đứng? A y = 3x + x−1 B y = sin x C y = tan x D y = x3 − 2x2 + 3x + Câu 47 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 2a, đường cao hình chóp a Tính góc hai mặt phẳng (S AC) (S AB) A 360 B 300 C 600 D 450 Câu 48 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính qng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động A S = 24 (m) B S = 20 (m) C S = 28 (m) D S = 12 (m) Câu 49 Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m ≤ B m > C m ≥ D m < Câu 50 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) bao nhiêu? √ √ A R = 21 B R = 29 C R = D R = Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 10/04/2023, 13:33

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN