1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (547)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 123,31 KB

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x2 và đường thẳ[.]

Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x A B C D − 6 Câu Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = −1 B f (−1) = −5 C f (−1) = D f (−1) = −3 Câu Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề đúng? A Hàm số nghịch biến khoảng (−∞; −3) B Hàm số nghịch biến khoảng (−3; 1) C Hàm số nghịch biến khoảng (1; +∞) D Hàm số đồng biến khoảng (−3; 1) Câu Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x3 + x2 y = x2 +3x+mcắt nhiều điểm A m = B < m < C −2 ≤ m ≤ D −2 < m < √ sin 2x Câu Giá trị lớn hàm số y = ( π) R bằng? √ A π B π C D Câu Biết R5 A T = dx = ln T Giá trị T là: 2x − B T = 81 C T = √ D T = Câu R7 Biết f (u)du = F(u) + C Mệnh đề R đúng? A f (2x − 1)dx = 2F(x) − + C B f (2x − 1)dx = 2F(2x − 1) + C R R C f (2x − 1)dx = F(2x − 1) + C D f (2x − 1)dx = F(2x − 1) + C R Câu Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = B yCD = −2 C yCD = 52 D yCD = 36 2x + Câu Tiệm cận ngang đồ thị hàm số y = đường thẳng có phương trình: 3x − 2 A y = − B y = C y = D y = − 3 3 Câu 10 Tập nghiệm bất phương trình log(x − 2) > A (3; +∞) B (12; +∞) C (−∞; 3) D (2; 3) 800π Gọi A B hai điểm thuộc đường tròn đáy cho AB = 12, khoảng cách từ tâm đường tròn đáy đến mặt phẳng (S AB) √ √ 24 A B C D 24 Câu 11 Cho khối nón có đỉnh S , chiều cao thể tích Câu 12 Trong khơng gian Oxyz, cho hai điểm A(0; 0; 10) B(3; 4; 6) Xét điểm M thay đổi cho tam giác OAM khơng có góc tù có diện tích 15 Giá trị nhỏ độ dài đoạn thẳng MB thuộc khoảng đây? A (4; 5) B (6; 7) C (2; 3) D (3; 4) Câu 13 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d = B d > R C d < R D d = R Trang 1/5 Mã đề 001 Câu 14 Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho B πrl C 2πrl D πrl2 A πr2 l 3 Câu 15 Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox 16 16π 16π 16 A B C D 15 15 R2 R2 Câu 16 Nếu f (x) = [ f (x) − 2] A B C D −2 Câu 17 Tính √ mơ-đun số phức z thỏa mãn z(2 − i) + 13i = √ 34 A |z| = B |z| = 34 C |z| = 34 Câu 18 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực C Mô-đun số phức z số thực dương Câu 19 Số phức z = A √ D |z| = 34 B Mô-đun số phức z số phức D Mô-đun số phức z số thực khơng âm (1 + i)2017 có phần thực phần ảo đơn vị? 21008 i 1008 B C D Câu 20 Đẳng thức đẳng thức sau? A (1 + i)2018 = 21009 B (1 + i)2018 = −21009 i C (1 + i)2018 = 21009 i D (1 + i)2018 = −21009 Câu 21 Cho số phức z thỏa mãn z(1 + 3i) = 17 + i Khi√đó mơ-đun số phức√w = 6z − 25i D 29 A 13 B C !2016 !2018 1+i 1−i Câu 22 Số phức z = + 1−i 1+i A −2 B C + i D Câu 23 Cho số phức z = + 5i Tìm số phức w = iz + z A w = −7 − 7i B w = + 7i C w = − 3i D w = −3 − 3i Câu 24 Với số phức z, ta có |z + 1|2 A z2 + 2z + B z · z + z + z + D z + z + C |z|2 + 2|z| + Câu 25 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? C z + z = 2bi D |z2 | = |z|2 A z · z = a2 − b2 B z − z = 2a R2 Câu 26 Tích phân I = (2x − 1) có giá trị bằng: A B C D R Câu 27 Tìm nguyên hàm I = xcosxdx A I = xsinx − cosx + C B I = xsinx + cosx + C x x C I = x sin + C D I = x2 cos + C 2 Câu 28 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương trình A x − 2y + 2z + 15 = B x + 2y + 2z + 15 = C x − 2y + 2z − 15 = D x + 2y + 2z − 15 = Câu 29 Trong không gian Oxyz, điểm đối xứng với điểm B(3; −1; 4) qua mặt phẳng (xOz) có tọa độ A (3; −1; −4) B (−3; −1; 4) C (3; 1; 4) D (−3; −1; −4) Trang 2/5 Mã đề 001 Câu 30 Biết R1 x2 a a 3x − dx = 3ln − , a, b nguyên dương phân số tối giản Hãy + 6x + b b tính ab A ab = 12 B ab = −5 Câu 31 Tìm nguyên hàm hàm số f (x) = √ f (x)dx = √ + C 2x + R √ C f (x) = 2x + + C A R 2x + R √ B f (x)dx = 2x + + C D R f (x)dx = Câu 32 Hàm số f (x) thoả mãn f ′ (x) = x x là: A (x − 1) x + C D ab = C ab = B (x + 1) x + C C x2 + x+1 + C D x2 x + C R3 f (x) = Tích phân f (x) D √ Câu 34 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | + 2|z √ + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = √ Câu 35 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 1 B ≤ |z| ≤ C |z| > D |z| < A < |z| < 2 2 Câu 33 Cho hàm số f (x) liên tục R A B R4 x+1 1√ 2x + + C f (x) = 10, C R4 Câu 36 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn biểu √ thức P = |z1 | + |z √2 | √ √ A P = 34 + B P = C P = + D P = 26 Câu 37 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A z số thực không dương B z số ảo C Phần thực z số âm D |z| = Câu 38 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C D 18 √ điểm A hình vẽ bên điểm Câu 39 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm N bốn điểm M, N, P, Q Khi điểm biểu diễn iz B điểm P C điểm M D điểm Q = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu diễn ! số phức thuộc tập hợp ! sau đây? ! ! 9 A ; +∞ B ; C ; D 0; 4 4 Câu 40 Cho số phức z thỏa mãn (3 − 4i)z − Câu 41 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ A B 10 C 15 D Trang 3/5 Mã đề 001 Câu 42 Cho số phức z , cho z số thực w = thức |z| bằng? + |z|2 √ B A z số thực Tính giá trị biểu + z2 C D A D = (−∞; 0) 3x + x−1 B D = (−∞; −1] ∪ (1; +∞) C D = (1; +∞) D D = (−1; 4) r Câu 43 Tìm tập xác định D hàm số y = log2 √ 2x − x2 + có số đường tiệm cận đứng là: Câu 44 Đồ thị hàm số y = x2 − A B C D Câu 45 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A 2x + y − 4z + = B 2x + y − 4z + = C −2x − y + 4z − = D 2x + y − 4z + = Câu 46 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 32π 33π 31π B C 6π D A 5 Câu 47 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 23 29 27 25 B C D A 4 4 Câu 48 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: A ln + 6π B 6π ln + 5 C 6π cos x π F(− ) = π Khi giá trị sin x + cos x D 3π ln + Câu 49 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc với mặt phẳng (ABC), diện tích tam giác S BC a Tính thể tích khối chóp S ABC √ √ √ √ a3 15 a3 15 a3 a3 15 A B C D 16 Câu 50 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080253 đồng C 36080255 đồng B 36080251 đồng D 36080254 đồng Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 10/04/2023, 13:30

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN