Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho M(2;−3;−1), N(2;−1; 1) Tìm tọa đ[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (−2; 0; 0) B (0; −2; 0) C (0; 2; 0) D (0; 6; 0) √ x Câu Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H4) B (H2) C (H1) D (H3) Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? A y = x3 − 2x2 + 3x + B y = sin x 3x + C y = tan x D y = x−1 Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m > B m ≤ C m ≥ D m < Câu √Cho hai√ số thực a, bthỏa mãn a > b > Kết luận√ sau sai? √ √5 √ − a b 2 − e C a > b D a < b A a Câu Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ B m ≥ C m ∈ (−1; 2) D m ∈ (0; 2) A −1 < m < Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 5; 0) B (0; −5; 0) C (0; 1; 0) D (0; 0; 5) Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu A πR3 B πR3 C πR3 D 4πR3 Câu Trên tập số phức, cho phương trình z2 + 2(m − 1)z + m + 2m = Có tham số m để 2 phương trình cho có hai nghiệm phân biệt z1 ; z2 thõa mãn z1 + z2 = A B C D Câu 10 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) mặt phẳng (P) : 2x+2y−z+9 = Đường thẳng d qua A có vectơ phương ⃗u = (3; 4; −4) cắt (P) B Điểm M thay đổi (P) cho M ln nhìn đoạn AB góc 90o Khi độ dài MB lớn nhất, đường thẳng MB qua điểm điểm sau? A K(3; 0; 15) B I(−1; −2; 3) C H(−2; −1; 3) D J(−3; 2; 7) Câu 11 Cho số phức z1 = − 4i; z2 = − i, phần ảo số phức z1 z2 A B −1 C −7 D Câu 12 Tập nghiệm bất phương trình 52x+3 > −1 A R B (−3; +∞) C (−∞; −3) D ∅ Câu 13 Có cặp số nguyên (x; y) thỏa mãn log4 (9x2 + 16y2 + 112y) + log3 (9x2 + 16y2 ) < log4 y + log3 (684x2 + 1216y2 + 720y)? A 56 B 76 C 48 D 64 Trang 1/5 Mã đề 001 Câu 14 Cho hàm số y = f (x) xác định tập R có f ′ (x) = x2 − 5x + Khẳng định sau đúng? A Hàm số cho đồng biến khoảng (1; 4) B Hàm số cho nghịch biến khoảng (3; +∞) C Hàm số cho nghịch biến khoảng (1; 4) D Hàm số cho đồng biến khoảng (−∞; 3) z = Biết tập hợp điểm biểu diễn số phức zlà đường Câu 15 Cho số phức zthỏa mãn i + trịn (C) √ Tính bán kính rcủa đường trịn (C) √ B r = C r = D r = A r = − → Câu 16 Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → n→ Góc hai mặt phẳng (P) (Q) Q Biết cosin góc hai vectơ nP nQ − A 60◦ B 45◦ C 30◦ D 90◦ Câu 17 Những số sau vừa số thực vừa số ảo? A Khơng có số B C.Truehỉ có số C Chỉ có số !2016 !2018 1+i 1−i Câu 18 Số phức z = + 1−i 1+i A B −2 C D D + i Câu 19 Với số phức z, ta có |z + 1|2 A z + z + B z · z + z + z + C |z|2 + 2|z| + D z2 + 2z + (1 + i)(2 + i) (1 − i)(2 − i) + Trong tất kết luận sau, kết Câu 20 Cho số phức z thỏa mãn z = 1−i 1+i luận đúng? A z = z B z số ảo C |z| = D z = z Câu 21 Cho hai √ số phức z1 = + i z2√= − 3i Tính mơ-đun số phức z1 + z2 A |z1 + z2 | = 13 B |z1 + z2 | = C |z1 + z2 | = D |z1 + z2 | = Câu 22 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A −22016 B −21008 C −21008 + D 21008 2(1 + 2i) Câu 23 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A B C 13 D Câu 24 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A B −7 C −3 D (1 + i)2017 Câu 25 Số phức z = có phần thực phần ảo đơn vị? 21008 i A B C D 21008 R1 3x − a a Câu 26 Biết dx = 3ln − , a, b nguyên dương phân số tối giản Hãy b b x + 6x + tính ab A ab = 12 B ab = −5 C ab = D ab = Câu R27 Mệnh đề nàoRsau sai? R A R ( f (x) − g(x)) = f (x) − g(x), với hàm số f (x); g(x) liên tục R B R f ′ (x) = f (x) + CR với mọiR hàm số f (x) có đạo hàm liên tục R C R ( f (x) + g(x)) R = f (x) + g(x), với hàm số f (x); g(x) liên tục R D k f (x) = k f (x) với số k với hàm số f (x) liên tục R Trang 2/5 Mã đề 001 Câu 28 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) tọa độ trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là: A C(−1; −4; 4) B C(1; 4; 4) C C(1; 0; 2) D C(−1; 0; −2) −−→ Câu 29 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) B(2; 2; 1) Vectơ AB có tọa độ A (3; 1; 1) B (3; 3; −1) C (−1; −1; −3) D (1; 1; 3) Câu 30 Hàm số f (x) thoả mãn f ′ (x) = x x là: A x2 x + C B (x − 1) x + C R2 Câu 31 Tính tích phân I = xe x dx A I = 3e2 − 2e B I = e2 x+1 C (x + 1) x + C D x2 + C I = e D I = −e2 x+1 + C Câu 32 Cho hàm sốRy = f (x) có đạo hàm, liên tục R f (x) > x ∈ [0; 5] Biết f (x)· f (5− x) = 1, tính tích phân I = + f (x) 5 A I = B I = C I = 10 D I = R Câu 33 Tìm nguyên hàm I = xcosxdx x A I = x2 cos + C B I = xsinx − cosx + C x C I = x2 sin + C D I = xsinx + cosx + C z Câu 34 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức M = |z + − i| √ √ D A B C 2 Câu 35 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm S B điểm P bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm Q D điểm R Câu 36 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | Câu 37 Cho số√phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| A max T = B P = C P = −2016 D P = 2016 Câu 38 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A B C D 13 √ 2 Câu 39 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ √ 2 2 2 2 A |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = 2 B |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = Câu 40 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − hai nghiệm phức √ phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ 85 97 A T = 13 B T = C T = D T = 13 3 Trang 3/5 Mã đề 001 Câu 41 Cho số phức z thỏa mãn |z| ≤ ĐặtA = A |A| ≤ B |A| < 2z − i Mệnh đề sau đúng? + iz C |A| ≥ D |A| > = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu diễn số phức thuộc tập hợp sau đây? ! ! ! ! 1 B ; C ; +∞ D 0; A ; 4 4 Câu 42 Cho số phức z thỏa mãn (3 − 4i)z − Câu 43 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ a 15 3a 30 3a 3a A B C D 10 Câu 44 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình nón đỉnh S đáy hình trịn nội tiếp tứ giác ABCD √ √ √ √ πa2 17 πa2 17 πa2 17 πa2 15 A B C D √ Câu 45 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình vơ nghiệm B Bất phương trình có nghiệm thuộc khoảng (−∞; 1) C Bất phương trình với x ∈ [ 1; 3] D Bất phương trình với x ∈ (4; +∞) Câu 46 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = 3x Câu 47 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = B m = C Không tồn m D m = −2 Câu 48 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 23 27 25 29 A B C D 4 4 Câu 49 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = + 2(ln a)2 B P = ln a C P = D P = 2loga e d Câu 50 Cho hình chóp S ABC có đáy ABC √ tam giác vng A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ √ A a B a C 2a D a Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001